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The canopy layer urbanheat island (CLUHI) and surface urbanheat island (SUHI) refer to higher canopy layer and
land surface temperatures in urban areas than in rural areas, respectively. The long-term trends of CLUHIs are
poorly understood at the regional scale. In this study, 1 km resolution air temperature (Ta) data for the
2001–2018 period in the mainland of China were mapped using satellite data and station-based Ta data. Subse-
quently, the temporal trends of the CLUHI and SUHI intensities (CLUHII and SUHII, respectively) were investi-
gated in 272 cities in the mainland of China. The Ta was estimated with high accuracy, with a root mean
square error ranging from 0.370 °C to 0.592 °C. The CLUHII and SUHII increased significantly in over half of the
cities in spring and summer, over one-third of the cities in autumn, and over one-fifth of the cities in winter.
The trends of the nighttime SUHII were strongly related to the CLUHII calculated using mean and minimum Ta
(correlation coefficients ranging from 0.613 to 0.770), whereas the relationships between the trends of the day-
time SUHII and CLUHII were relatively weak. Human activities were the major driving forces for the increase in
the CLUHII and SUHII. The difference in impervious surfaces between urban and rural areas was significantly cor-
related with the CLUHII and SUHII in approximately half of the cities. Meteorological factors were significantly
The mainland of China
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correlated with the CLUHII and SUHII in few cities. This study highlights the trends of the significant increase in
the CLUHII and SUHII in the mainland of China, which may have negative effects on humans and the
environment.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Rapid urbanization has strongly modified the Earth's surface in the
past several decades. It can lead to higher subsurface, surface, and air
temperatures (Ta) in urban areas compared with those in surrounding
rural areas. This phenomenon is called the urban heat island (UHI) ef-
fect, which can affect human comfort and health (Patz et al., 2005), in-
crease energy consumption (Santamouris et al., 2001; Akbari et al.,
2015), and alter water and air quality (Lai and Cheng, 2009; Grimm
et al., 2008). To support the design of adaptive strategies, a comprehen-
sive understanding of the UHI effect is needed.

The UHI can generally be grouped into three types, namely subsur-
face UHI (SubUHI) (Zhan et al., 2014), surface UHI (SUHI) (Zhou et al.,
2019), and canopy layer UHI (CLUHI) (Pichierri et al., 2012). The
SubUHI, SUHI, and CLUHI refer to higher subsurface, surface, and canopy
layer temperatures in urban areas compared with those in nearby rural
areas, respectively. The SubUHI can be monitored by observation sta-
tions and modeled by satellite remote sensing. Analysis of the SubUHI
effect is challenging, and has only been conducted in few studies
(Zhan et al., 2014). The SUHI effect is commonly monitored by satellite
remote sensing, which provides spatially continuous land surface tem-
perature (Ts) data. The spatiotemporal variations in the SUHI effect
have been widely studied (Du et al., 2016; Peng et al., 2018; Peng
et al., 2012; Yao et al., 2019; Zhou et al., 2014). For example, Yao et al.
(2019) investigated the trends of the SUHI intensity (SUHII) in 397
global cities from 2001 to 2017. Trends of significant increases in annual
daytime and nighttime SUHII were found in 42.1% and 30.5% of cities,
respectively. Increased rural vegetation coverage is an important driver
for the increase in the daytime SUHII (Yao et al., 2019). The CLUHI effect
is normally studied using Ta data from meteorological stations at 2 m
above the ground (Hu et al., 2019; Voogt and Oke, 2003). Ta data from
meteorological stations have a high temporal resolution and accuracy,
but are spatially discontinuous. Some advanced methods have also
been used to analyze the CLUHI effect. Some studies used numerical
models (Li et al., 2019;McCarthy et al., 2010; Oleson et al., 2010). For in-
stance, Li et al. (2019) first created a 1 km resolution Ta map using the
Weather Research and Forecasting Model, and then analyzed the
CLUHI intensity (CLUHII) in Berlin, Germany. The results showed that
the nighttime CLUHII was prominent (1.62 °C) but the daytime CLUHII
was insignificant (−0.04 °C). Some studies first mapped Ta data using
satellite variables andobserved Tadata, and then analyzed the CLUHI ef-
fect (Li and Zha, 2019b; Liu et al., 2020). For example, Li and Zha
(2019b) first developed a 1 km resolution Ta dataset, and then analyzed
the CLUHII in 32 cities in China. The results showed that the annual day-
time and nighttime CLUHIIs ranged from 0.2 °C to 2.2 °C and from 0.3 °C
to 2.4 °C, respectively. These methods are promising because they can
retain the advantages of meteorological station monitoring (e.g., high
temporal resolution) and make up for its shortcomings (e.g., spatial
discontinuity).

With respect to human health impacts, the CLUHI effect may be
more important than the SUHI effect because human skin is directly in
contact with the atmosphere rather than the land surface (Anniballe
et al., 2014; Zhou et al., 2016). The spatiotemporal variations in the
CLUHI effect and their associated determinants have beenwidely inves-
tigated (Arnfield, 2003; Li et al., 2019; Li and Zha, 2019b; Liu et al., 2020;
Oke, 1981; Pichierri et al., 2012). However, there are still some gaps in
the current research on the CLUHI effect. For example, the long-term
trends of the CLUHI effect and its associated drivers are still poorly un-
derstood at the regional scale. By using the observed Ta data from
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meteorological stations, some studies found that the CLUHI effect has
intensified significantly in the past few decades (Liao et al., 2017b;
Ren and Zhou, 2014; Ren et al., 2008; Yang et al., 2011; Varquez and
Kanda, 2018; Park et al., 2017; Founda et al., 2015). However, most of
these studies only analyzed the regional averaged CLUHI effect and
did not reveal the drivers of the trends of the CLUHI effect. In addition,
these studies have some uncertainties because the meteorological sta-
tions are sparsely distributed. Climate models have also been used to
analyze the changes of CLUHI. For example, McCarthy et al. (2010)
projected the changes of CLUHI with future climate change using an
urban scheme within a global climate model by 2050. The results
showed that future warming can reduce the CLUHII by 6% at the global
scale. However, climate models may have uncertainty and the result
may be largely affected by model parameters (Hourdin et al., 2017;
McCarthy et al., 2010). Liu et al. (2020) analyzed the CLUHI effect in
southern China using spatially continuous Ta data modeled by satellite
data. The results showed that the average CLUHII was 1.490 °C and
the average trend of the CLUHI was 0.011 °C/year. However, Liu et al.
(2020) only analyzed the CLUHI effect for 33 cities in 3 provinces in
China. In addition, the time series used by Liu et al. (2020) was only
13 years (2003–2015). Therefore, the present study aimed to conduct
comprehensive analyses of the temporal trends of the CLUHI effect
and their drivers. The SUHI effect was also analyzed and compared
with the CLUHI effect. The Ta data used in this study were mapped
using satellite variables and amatching learning algorithm. The remain-
ingmanuscript is organized as follows. Section 2 presents the study area
and data. Section 3 presents the methods used in this study, including
the Ta estimation and validation, methods for analyzing the trends of
the CLUHI effect and SUHI effect, and drivers of the trends of the
CLUHI effect and SUHI effect. Section 4 presents themain results, includ-
ing the accuracy of the estimated Ta, temporal trends of the CLUHI effect
and SUHI effect, and their drivers. Section 5 discusses the methods and
results of this study. A summary is presented in Section 6.

2. Study areas and data

2.1. Study areas

China is themost populous developing country in theworld. In addi-
tion, the mainland of China has experienced unprecedented rapid ur-
banization since the reform and opening-up. The urban population
increased from 192 million in 1980 to 775 million in 2015 (United
Nations, 2018). This makes it crucial to reveal the temporal trends of
the UHI effect in themainland of China. In this work, a total of 272 cities
with urban areas larger than 50 km2 in the mainland of China were se-
lected as the study areas (Fig. 1). These cities are mainly distributed in
eastern China. The elevations of these 272 cities range from 3m (Yang-
zhou) to 2285m (Xining). The climate differs greatly across these cities,
with an annual mean Ta ranging from 2.5 °C (Yichun) to 24.6 °C (Hai-
kou) and an annual total precipitation ranging from 65 mm (Korla) to
2874 mm (Yangjiang).

2.2. Data and preprocessing

The data used in the present study and their associated information
are presented in Table 1. First, Ta (includingmean, maximum, andmin-
imum Ta), precipitation, wind speed, and sunshine duration data from
697 meteorological stations for the 2001–2018 period were derived
from the China Meteorological Data Service Center. The spatial



Fig. 1. (a) Spatial distribution of the 272 selected cities. The backgroundmap is theMODISMCD12Q1 landcover data in2018. (b) Spatial distribution of the 697meteorological stations. The
background map is the elevation data.
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distribution of the meteorological stations is shown in Fig. 1b. Second,
MODIS MOD11A2 Ts (including daytime Ts, nighttime Ts, clear-sky
days, and clear-sky nights), MOD13A3 enhanced vegetation index
(EVI), and MCD12Q1 land cover type data were derived from the
NASA Level-1 and Atmosphere Archive & Distribution System. Third,
clear-sky solar radiation, slope, aspect, latitude, and longitude data
were calculated using ArcGIS software. Fourth, elevation (Danielson
andGesch, 2011), topographic index (Marthews et al., 2015), nighttime
light (NL) (Li et al., 2020), and impervious surface (IS) (Gong et al.,
2020) data were used.

The 500 m resolution land cover data were resampled to 1 km. The
proportion of IS (PIS) data with 1 km resolution was calculated from
theoriginal 30m resolution data. The Ta, precipitation,wind speed, sun-
shine duration, Ts, and EVI data were averaged into one season (spring:
March toMay; summer: June to August; autumn: September toNovem-
ber; winter: December to February). In the process of averaging, only
valid values were used (Yao et al., 2017b; Li et al., 2017). The land
3

cover type, NL, and PIS data were assumed to be the same for the entire
year. The topographic index, elevation, slope, aspect, latitude, and longi-
tude data were assumed to be the same for the 2001–2018 period.

The land cover type (according to MODIS land cover data) of 6, 157,
129, 12 and 293 out of 697 meteorological stations are water bodies,
natural vegetation, croplands, barelands and urban areas, respectively.
The PIS in 2 km buffer areas around 302, 157, 132, 74 and 32 out of
697 meteorological stations are within the range of 0–20%, 20–40%,
40–60%, 60–80% and 80–100%, respectively.

3. Methods

3.1. Ta estimation

Accurate estimation of Ta is the basis of the CLUHI effect study.
Therefore, this study chose as many variables as possible to estimate
the Ta. A total of 16 variables were used, namely daytime Ts, nighttime



Table 1
Data used in this study and their associated information. Ta: air temperature. Ts: land surface temperature. EVI: enhanced vegetation index. NL: nighttime light. IS: impervious surface.

Data Spatial resolution Temporal resolution Source Time period

Mean Ta Point 1 day http://data.cma.cn/ 2001–2018
Maximum Ta Point 1 day http://data.cma.cn/ 2001–2018
Minimum Ta Point 1 day http://data.cma.cn/ 2001–2018
Precipitation Point 1 day http://data.cma.cn/ 2001–2018
Wind speed Point 1 day http://data.cma.cn/ 2001–2018
Sunshine duration Point 1 day http://data.cma.cn/ 2001–2018
Daytime Ts 1 km 8 days https://ladsweb.modaps.eosdis.nasa.gov/search/ 2001–2018
Nighttime Ts 1 km 8 days https://ladsweb.modaps.eosdis.nasa.gov/search/ 2001–2018
Clear sky days 1 km 8 days https://ladsweb.modaps.eosdis.nasa.gov/search/ 2001–2018
Clear sky nights 1 km 8 days https://ladsweb.modaps.eosdis.nasa.gov/search/ 2001–2018
EVI 1 km 1 month https://ladsweb.modaps.eosdis.nasa.gov/search/ 2001–2018
Land cover type 500 m 1 year https://ladsweb.modaps.eosdis.nasa.gov/search/ 2001–2018
Topographic index 1 km No https://eidc.ac.uk No
Elevation 1 km No Stored in ENVI software No
Solar radiation 1 km 3 months Calculated using ArcGIS software 2001–2018
Slope 1 km No Calculated using ArcGIS software No
Aspect 1 km No Calculated using ArcGIS software No
Latitude 1 km No Calculated using ArcGIS software No
Longitude 1 km No Calculated using ArcGIS software No
NL 1 km 1 year https://doi.org/10.6084/m9.figshare.9828827.v2 2001–2018
IS 30 m 1 year http://data.ess.tsinghua.edu.cn/ 2001–2018
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Ts, clear-sky days, clear-sky nights, EVI, elevation, topographic index,
solar radiation, aspect, slope, PIS, NL, land cover type, latitude, longitude,
and year. The values of the pixels corresponding to meteorological sta-
tions were extracted from the following data: daytime Ts, nighttime
Ts, clear-sky days, clear-sky nights, EVI, elevation, topographic index,
solar radiation, aspect, slope, PIS, NL, and land cover type. In addition,
latitude, longitude, and year information corresponding to the Ta from
the meteorological station data were directly used.

In this study, Cubist matching learning algorithm (Quinlan, 1992)
(detailed information see Appendix) was used to estimate the Ta be-
cause it has high accuracy (Zhang et al., 2016; Noi et al., 2017; Xu
et al., 2018). The Ta and 16 prediction variableswere input into the Cub-
ist model, and the relationship between the Ta and prediction variables
was fit. After, the 1 km resolution Ta data were mapped using the fitted
relationship and 1 km resolution prediction variable data. The Ta data
for the four seasons were estimated separately (but for all years to-
gether) because the correlations between the Ta and prediction vari-
ables varied by season (Yao et al., 2020).
3.2. Variable selection

The number of prediction variables in this study was large. Some
prediction variables may not have a positive effect on the estimation
of Ta and may cause an overfitting phenomenon. Therefore, a variable
selection method was used (Meyer et al., 2016; Xu et al., 2018). First,
all the possible combinations of two variableswere input into the Cubist
model and the combination with the highest accuracy was used. Sec-
ond, the remaining variables were separately added to the current com-
bination, and the variable that best improved the accuracy was
maintained. Third, the second step was repeated until the accuracy of
the Ta estimation could not be improved. By using this variable selection
method, 12 variables (daytime Ts, nighttime Ts, clear-sky days, clear-
sky nights, elevation, topographic index, solar radiation, aspect, slope,
latitude, longitude, and year) were used. Additionally, 4 variables (EVI,
PIS, NL and land cover type) had no positive effect on Ta estimation.
This is similar to Li and Zha (2019a) and Janatian et al. (2017), which
found that vegetation index and variables related to land cover had neg-
ligible effect on Ta estimation. The reason for this is that these variables
(EVI, PIS, NL and land cover type) significantly correlated with other
variables (e.g., Ts) and did not provide additional information when
estimating Ta.
4

3.3. Accuracy validation of Ta estimation

The accuracy of the estimated Ta was first validated. In addition, as
the goals of this study were to analyze the trend of the CLUHI effect
and its drivers, the accuracies of the interannual variations and trends
of Ta were also verified. Meteorological stations that were relocated
(360 out of 697 stations) during 2001–2018 were not utilized to vali-
date the accuracies of the interannual variations and trends of the pre-
dicted Ta because station relocation can affect the observed
interannual variations and trends of Ta. Therefore, the accuracy of the
estimated Ta was validated using a modified 10-fold validation method
(Yao et al., 2020), which included the following four steps:

(1) Samples from meteorological stations that had not been
relocated (337 out of 697) were randomly partitioned into 10
subsets.

(2) Nine subsets partitioned in the previous step and samples from
the meteorological stations that were relocated were input into
the Cubistmodel, and the remaining subsetwas employed to val-
idate the accuracy.

(3) Step (2) was repeated 10 times. For each time, an unused subset
was used to validate.

(4) The mean absolute error (MAE), root mean square error (RMSE)
and coefficient of determination (R2) were computed to describe
the accuracy of the estimated Ta. The interannual MAE, RMSE
and R2 were computed for each station that was not relocated.
The MAE, RMSE and R2 were calculated to describe the accuracy
of the trends (calculated using the linear regression method) of
the estimated Ta across 337 stations that were not relocated.

3.4. Analyzing the trends of CLUHI and SUHI

Pixels with a PIS higher than 50% (Mertes et al., 2015; Yao et al.,
2018a; Zhou et al., 2014)were considered urban pixels in this study. Cit-
ies with urban areas larger than 50 km2 in 2018 were selected as study
areas. Subsequently, a 20 km buffer based on the urban area was gener-
ated for each city. In the 20 km buffer, areas with a PIS higher than 0%
were excluded, and the remaining areas were considered rural areas.
It should be noted that the urban and rural areas in 2018 were used to
analyze the UHI effect for the 2001–2018 period, because this strategy
can uncover the overall trend of UHI effect, including the trends in
newly developed and old urban areas (Yao et al., 2018b, 2019). Finally,
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the UHI intensity (UHII, hereafter CLUHII and SUHII) was used to quan-
tify the UHI effect (Peng et al., 2012; Zhou et al., 2014), as follows:

ΔT1 CLUHIIð Þ ¼ Taurban−Tarural ð1Þ

ΔT2 SUHIIð Þ ¼ Tsurban−Tsrural ð2Þ

where ΔT1 and ΔT2 refer to the CLUHII and SUHII, respectively. Taurban
and Tsurban represent the spatial average urban Ta and Ts, respectively.
Tarural and Tsrural refer to the spatial average rural Ta and Ts, respec-
tively. The CLUHII calculated using themean, maximum, and minimum
Ta was called the CLUHII_Tmean, CLUHII_Tmax, and CLUHII_Tmin, re-
spectively. The SUHII calculated using the daytime and nighttime Ts
was called the daytime SUHII and nighttime SUHII, respectively. The
temporal trends of the CLUHII and SUHII during 2001–2018were calcu-
lated using a linear regression method.

3.5. Investigating the drivers of the trends of the CLUHI and SUHI effects

ΔEVI, ΔNL, and ΔPIS were calculated using the samemethod as that
in Eqs. (1) and (2). The relationships between the UHII and ΔEVI, ΔNL,
ΔPIS, precipitation, wind speed, and sunshine duration were then ex-
plored. Pearson's correlation analysis between the UHII and associated
determinants was conducted in each city separately across
2001–2018. Pearson's correlation analysis has been widely used to
Fig. 2. Accuracy of the estimated air temperature (Ta). MAE: mean absolute
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analyze the drivers of the UHI effect in previous studies (Du et al.,
2016; Yao et al., 2018b; Zhou et al., 2014). Hierarchical partitioning
(HP) analysis was utilized to calculate the relative importance of each
factor to the UHI effect (Mac, 2000; Peng et al., 2018). HP analysis can
avoid the multicollinearity phenomenon in environmental variables.

4. Results

4.1. Accuracy of Ta estimation

The Cubist model produced accurate Ta estimates (Fig. 2). The MAE,
RMSE, and R2 of the Ta estimation ranged from 0.289 °C to 0.455 °C,
0.370 °C to 0.592 °C, and 0.989 to 0.997, respectively. Seasonally, the
MAE and RMSE values in summer were lower than those in other sea-
sons. However, the R2 in summer was also lower than that in other sea-
sons. This was primarily because the range of the Ta in the mainland of
China in summer is significantly lower than that in other seasons (Li and
Zha, 2019a; Yao et al., 2020). Diurnally, the accuracy of themaximumTa
was generally lower than the mean and minimum Ta. This can be ex-
plained by the weaker correlation between the Ts and maximum Ta
than that between the Ts andmean orminimum Ta, whichwas demon-
strated by many previous studies (Kloog et al., 2014; Vancutsem et al.,
2010; Dousset, 1989). Furthermore, theMAE, RMSE, and R2 of the inter-
annual variations in the estimated Ta ranged from 0.289 °C to 0.455 °C,
0.358 °C to 0.568 °C, and 0.547 to 0.827, respectively. The MAE, RMSE,
error. RMSE: root mean square error. R2: coefficient of determination.



Fig. 3. Spatial distributions of the seasonal mean air temperature (Ta) in themainland of China in 2018 in (a) spring; (b) summer; (c) autumn; and (d) winter. Spatial distributions of the
seasonal mean Ta in Beijing in 2018 in (e) spring; (f) summer; (g) autumn; and (h) winter. Unit: °C.

Fig. 4. Trends of the CLUHII and SUHII averaged for 272 cities for the 2001–2018 period.
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Fig. 5. Spatial distributions of the trends of the CLUHII and SUHII for the 2001–2018 period.
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and R2 of the trends of the estimated Ta ranged from 0.091 °C/decade to
0.145 °C/decade, 0.118 °C/decade to 0.191 °C/decade, and 0.723 to
0.889, respectively. These results suggested that the estimated Ta was
7

temporally consistent with the observed Ta. The accuracy of the Ta esti-
mation in the present study was greater than that in most previous
studies (Hooker et al., 2018; Li et al., 2018; Lu et al., 2018; Shen et al.,



Table 3
Trends (°C/decade) of Ts and Ta in urban and rural areas averaged for 272 cities for the
2001–2018 period.

Spring Summer Autumn Winter

Urban areas
Mean Ta 0.583⁎ 0.501⁎⁎ 0.205 0.160
Maximum Ta 0.612 0.490⁎⁎ −0.110 0.189
Minimum Ta 0.528 0.554⁎⁎ 0.477⁎ 0.129
Daytime Ts 1.095⁎⁎ 1.367⁎⁎ 0.285 0.232
Nighttime Ts 0.847⁎ 0.802⁎⁎ 0.620⁎ 0.269

Rural areas
Mean Ta 0.320 0.256 0.096 0.068
Maximum Ta 0.358 0.316 −0.180 0.131
Minimum Ta 0.298 0.364⁎ 0.346 −0.007
Daytime Ts 0.304 0.234 −0.090 0.237
Nighttime Ts 0.493 0.420⁎ 0.329 0.024

Significance levels:
⁎ p < 0.05.
⁎⁎ p < 0.01.
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2020; Xuet al., 2018; Yao et al., 2020; Yoo et al., 2018; Zhang et al., 2016;
Zhou et al., 2020; Zhu et al., 2017). This occurred because (1) the num-
ber of prediction variables in this study was large (a total of 12 predic-
tion variables) and (2) this study estimated seasonal Ta, whereas most
previous studies estimated daily or monthly Ta. Overall, the accurate
Ta dataset ensured the reliability of the following results.

The spatial distributions of the seasonal mean Ta in 2018 are shown
in Fig. 3. The mean Ta was higher in summer and lower in winter. Spa-
tially, north China had a lower mean Ta owing to its higher latitude,
whereas the Qinghai-Tibet Plateau had a lower mean Ta because of its
high elevation. Furthermore, the developed Ta data could resolve the
UHI effect well (Fig. 3e–h), thereby indicating that the Ta data are suit-
able for investigating the UHI effect.

4.2. Trends of the CLUHII and SUHII in the mainland of China

The CLUHII and SUHII increased significantly in the mainland of
China during 2001–2018 (Figs. 4 and 5; Table 2). For the 272 cities com-
bined, the increasing rate of CLUHII ranged from 0.057 °C/decade to
0.263 °C/decade (p< 0.01 in all cases) (Fig. 4). The SUHII also increased
significantly, except for the daytime SUHII in winter. The number of cit-
ieswith a trend of significant increases in CLUHII and SUHII ranged from
71 to 218 and from 64 to 245, respectively (Table 2). Trends of signifi-
cant decreases in CLUHII and SUHII were found in few cities.

Trends of Ts and Ta in urban and rural areas averaged for 272 cities
for the 2001–2018 period are shown in Table 3. Although the Ts and
Ta increased in rural areas, the trends were not statistically significant
in most cases. Comparatively, the increasing trends of Ts and Ta in
urban areas were significant in many cases, especially in summer.
These results suggested that the UHI effect has significantly altered
the urban thermal environment since the beginning of the 21st century.

Seasonally, the increasing rates of CLUHII and SUHII in spring and
summerweremuch higher than those in autumn andwinter. The num-
ber of cities with significantly increasing rates of CLUHII and SUHII in
spring and summer was also much greater than that in autumn and
winter. These phenomena could be attributed to two main reasons.
First, it can be attributed to more significant decreasing trends of ΔEVI
in spring and summer than in autumn and winter (more information
can be found in the next section). Second, the definition of the season
was another reason. Spring, summer, autumn and winter were defined
as fromMarch toMay, June to August, September to November and De-
cember to February, respectively, in this study. This definition will put
the majority of dates past the spring equinox (longer day length than
night length) in spring and the majority of dates past the autumn equi-
nox (shorter day length than night length) in autumn. Therefore, the in-
creased IS due to urbanizationwill absorbmore solar radiation and lead
to higher increasing rates of UHII in spring and summer than in autumn
and winter.

Diurnally, the increasing rates of the CLUHII_Tmax were generally
lower than those of the CLUHII_Tmean and CLUHII_Tmin. This result
Table 2
Number of cities with trends of significant increases in the CLUHII and SUHII.

Spring Summer Autumn Winter

Number of cities with a significant increasing trend
CLUHI_Tmean 204 218 139 91
CLUHI_Tmax 183 156 93 71
CLUHI_Tmin 168 178 119 99
Daytime SUHII 193 245 147 64
Nighttime SUHII 154 190 153 115

Numbers of cities with a significant decreasing trend
CLUHI_Tmean 6 1 13 22
CLUHI_Tmax 1 3 32 23
CLUHI_Tmin 17 11 22 22
Daytime SUHII 13 5 23 63
Nighttime SUHII 8 4 7 13
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echoes those of previous studies (Arnfield, 2003; Liao et al., 2017b;
Pichierri et al., 2012). CLUHII_Tmax is generally lower than
CLUHII_Tmean or CLUHII_Tmin due to the solar shading effect and ad-
vective fluxes during the daytime. It suggested that the differences in
maximum Ta between urban and rural areas are generally lower than
the differences in mean and minimum Ta between urban and rural
areas. The transformation from rural to urban areas will therefore lead
to lower increasing rate of CLUHII_Tmax than those of the
CLUHII_Tmean and CLUHII_Tmin. In addition, the increasing rate of day-
timeSUHIIwas higher than that of nighttime SUHII, except for inwinter.
This was similar to the results of previous studies (Yang et al., 2019; Yao
et al., 2017a), and primarily occurred because the daytime SUHII ismore
affected by the decreased vegetation cover than nighttime SUHII. Spa-
tially, there was no clear difference in the trends of the UHII, thereby in-
dicating that the trends of increasing UHII werewidespread. Finally, the
increasing rates of the SUHIIweremuchhigher than those of theCLUHII,
except for in winter. This can be explained because Ts is more sensitive
to changes in land cover and surface characteristics than Ta.

The relationships between the trends of the CLUHII and SUHII are
shown in Fig. 6. The trends of the CLUHII were significantly (p < 0.05)
correlated with those of SUHII in most cases. However, the correlations
between the trends of the daytime SUHII and CLUHII were weak, with a
correlation coefficient (r) ranging from −0.318 to 0.445. The trends of
the nighttime SUHIIwere strongly related to those of the CLUHII_Tmean
(r ranging from 0.613 to 0.738) and the CLUHII_Tmin (r ranging from
0.655 to 0.770). This was primarily because the daytime SUHII is more
strongly affected by solar radiation and land cover type than the other
types of UHII (Xu et al., 2018). In addition, the correlations between
the trends of the daytime SUHII and the CLUHII_Tmax were stronger
than those between the daytime SUHII and the CLUHII_Tmean or
CLUHII_Tmin. Similarly, the correlations between the trends of the
nighttime SUHII and the CLUHII_Tmin were stronger than those be-
tween the nighttime SUHII and the CLUHII_Tmean or CLUHII_Tmax.
This was primarily because the monitoring times of the daytime and
nighttime SUHIIwere close to themonitoring times of the CLUHII_Tmax
and CLUHII_Tmin, respectively.

4.3. Drivers of the trends of the CLUHII and SUHII

Human activities were the main factors causing the increase in the
CLUHII and SUHII (Figs. 7–9). In approximately half of the cities, the
CLUHII and SUHII were significantly and positively related to the ΔPIS,
significantly and negatively related to the ΔEVI, and significantly and
positively related to the ΔNL (Fig. 7). ISs have a large heat storage and
low albedo. They can absorb a large amount of heat during the daytime
and subsequently release it slowly during the nighttime (Imhoff et al.,
2010; Zhou et al., 2014). Therefore, a larger ΔPIS was expected to have



Fig. 6. Relationships between the trends of the CLUHII and SUHII (°C/decade).
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a higher CLUHII and SUHII. Vegetation can decrease the temperature
through evapotranspiration and lead to a shading effect. It has been
widely proven to be an effective way to alleviate the UHI effect
(Anniballe et al., 2014; Yao et al., 2019; Zhou et al., 2019). As a result,
a large ΔEVI was generally accompanied by a lower CLUHII and SUHII.
9

Satellite-derived NL data are an important source for monitoring
human activities. They are strongly related tomany human activity fac-
tors, such as the amount of ISs (Liu et al., 2012; Zhao et al., 2020) and an-
thropogenic heat release (Liao et al., 2017a). Therefore, the ΔNL has
strong relationships with the CLUHII and SUHII.



Fig. 7. Number of cities with significant correlations between the UHII and associated determinants. “+” and “−” indicate positive and negative correlations, respectively.
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Among the three human activity factors, theΔPIS wasmore strongly
related to the UHII than the ΔEVI and ΔNL. The number of cities with
significant correlations between the UHII and ΔPIS was slightly higher
than that with significant correlations between the UHII and ΔEVI or
ΔNL (Fig. 7). Furthermore, the number of cities with ΔPIS as the most
important driver (highest absolute value of the correlation coefficient)
was much greater than that with ΔEVI or ΔNL as the most important
driver (Fig. 8). This occurred because ΔPIS not only represents the IS
area, but also relates to vegetation coverage and anthropogenic heat re-
lease, which directly relate to the UHII. In addition, the correlation be-
tween the UHII and ΔNL was weaker than that between the UHII and
ΔPIS or ΔEVI. This might be explained by the relatively low quality of
the NL data. We found that the NL decreased in urban areas in some cit-
ies (e.g., Yichun, Hegang, and Qitaihe) during 2001–2018. This was not
in line with the actual situation of rapid and widespread urbanization
in the mainland of China (Kuang et al., 2016; Liu et al., 2014).

The meteorological factors were significantly correlated with the
CLUHII and SUHII in few cities, thereby indicating that meteorological
factors were not the major driving forces for most cities. This result is
different from the previous studies that showed a clear control on
CLUHII by meteorological factors (Yow, 2007). The possible reason is
that: (1) these previous papers studied CLUHI on a short time scale,
but this study analyzed the trends of seasonalmeanCLUHI. The seasonal
meanmeteorological variablesmay not change significantly, and have a
10
relatively small effect on CLUHI. (2) the mainland of China has under-
gone rapid urbanization during the study period. The effect of meteoro-
logical factors was masked by urbanization factors. This result is also
different froma project study,which showed that the long-term climate
change can affect the CLUHI (McCarthy et al., 2010). This is probably be-
cause the time period of this study (18 years) is relatively short.

Seasonally, the relationships between human activities and the UHII
were stronger in spring and summer than in autumn andwinter. For ex-
ample, there were 171, 191, 118, and 58 cities with significant and neg-
ative correlations between the CLUHII_Tmean and the ΔEVI in spring,
summer, autumn, and winter, respectively (Fig. 7). This phenomenon
could be attributed to twomain reasons. First, the trends of more signif-
icant decreases in the ΔEVI in spring and summer than in autumn and
winter. Further analysis showed that the average decreasing rates of
the ΔEVI were −0.0036/year (p < 0.01), −0.0048/year (p < 0.01),
−0.0031/year (p < 0.01) and −0.0023/year (p < 0.01) in spring, sum-
mer, autumn, andwinter, respectively, averaged for 272 cities. In spring
and summer, trends of significant decreases in theΔEVI could lead to an
increase in the UHII, whereas the ΔEVI was relatively stable in autumn
and winter. Therefore, the UHII will also be stable and affected by
other factors in autumn and winter. Second, the definition of the sea-
sons was another reason.

Diurnally, there were no significant differences between the drivers of
the three types of CLUHII. For the SUHII, the ΔEVI was more strongly



Fig. 8. Number of cities for each associated determinant with the highest absolute correlation coefficient value among all the associated determinants.
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related to the daytime SUHII than to the nighttime SUHII. For example, the
relative importance of the ΔEVI to the summer daytime and nighttime
SUHII averaged for 272 cities was 26.3% and 20.6%, respectively (Fig. 9).
Thiswasprimarily becausevegetationevapotranspirationgenerally occurs
during the daytime rather than the nighttime (Peng et al., 2012; Yao et al.,
2017a). In addition, in spring and summer, the relationships between the
daytime SUHII and human activity factors were stronger than those be-
tween the other types of UHII (nighttime SUHII, CLUHII_Tmean,
CLUHII_Tmax, and CLUHII_Tmin) and human activity factors. This oc-
curred because the daytime SUHII was more affected by the changes in
land cover (e.g., ΔPIS) and surface characteristics (e.g., ΔEVI).

5. Discussion

5.1. Satellite-based Ta estimation

Traditionally, the Ta is monitored using station observations at a
height of 2 m. The Ta data obtained using this method have a high pre-
cision and temporal resolution. However, this method has some disad-
vantages. The most serious problem is that the meteorological stations
11
are sparsely distributed. Previous studies generally used one or several
meteorological stations to represent the Ta of the entire urban or rural
area, and then analyzed the CLUHI effect (Hu et al., 2019; Wang et al.,
2015; Yang et al., 2011; Liao et al., 2017b; Ren and Zhou, 2014). This
can cause great uncertainty if, for example, the urban meteorological
stations are located in urban green spaces, the CLUHII will be
underestimated. Similarly, when the rural meteorological stations are
located in rural settlements or suburban areas, the UHII will also be
underestimated. Furthermore, there are very few meteorological sta-
tions in mountains, deserts, and underdeveloped areas. Therefore, it is
difficult to accurately reveal the Ta and CLUHI effect variations in
these areas.

Satellite data have complete spatial coverage. Some satellite variables
are strongly related to the Ta. Thus, they can be used to map Ta data. In
this study, the Ta was mapped using satellite data and a matching learn-
ing algorithm. The developed Ta data had complete spatial coverage with
1 km spatial resolution, and thus could avoid the abovementioned uncer-
tainties caused by the use of weather stations. However, compared with
the station-based method, the satellite-based method has two main dis-
advantages. First, the time series of satellite data is relatively short.



Fig. 9. Relative importance of each influencing factor averaged for 272 cities.
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MODIS data have been available since February 2000. As a result, this
study analyzed the UHI effect for only 18 years, which is relatively short.
Second, although the accuracy of the developed Ta data in this study
was higher than that in previous studies, its accuracy was still lower
than that of the observed Ta data. Despite these shortcomings, the
satellite-based method is promising because (1) the study period can be
prolongedwith the extension of the satellite data time series in the future
and (2) the accuracy of the Ta can be further improvedwith the improve-
ment of the satellite data quality and matching learning algorithm. It
should be noted that climate model is also a promising method to
investigate CLUHI, because it can: (1) provide complete spatial coverage
Ta data; (2) analyze historical change of CLUHI (Oleson et al., 2010);
and (3) project future trend of CLUHI (McCarthy et al., 2010).

5.2. Increased UHII

In this study, the CLUHII and SUHII increased significantly in the
mainland of China during 2001–2018. This result is similar to many
12
previous studies (Yao et al., 2017a; Yang et al., 2019; Varquez and
Kanda, 2018). Urbanization is the main factor causing the increase of
UHII. As urbanization will not stop, the UHII will continue to increase
in the future (Zhang et al., 2020; Kim et al., 2016; Doan and Kusaka,
2018; Masson et al., 2020). The rising UHII will continuously cause neg-
ative effects on humans and the environment. First, the UHI effect can
increase mortality. Goggins et al. (2012) found that a 1 °C increase in
temperature leads to a 4.1% increase in mortality in areas with a high
UHII. Second, the UHI effect can affect human comfort and health.
Jenerette et al. (2016) found that the urban daytime Ts was strongly re-
lated to heat-related illnesses. Third, the UHI effect can increase energy
consumption. A 0.45 °C increase in temperaturewill cause a 1.5–2.0% in-
crease in electricity consumption in large cities (Akbari et al., 2015). Fi-
nally, the UHI effect can increase the concentrations of atmospheric
pollutants (NO2, CO2, and CO) (Lai and Cheng, 2009). Even worse, the
intensifiedUHI effectwill overlapwith the effect of globalwarming, fur-
ther increasing the urban temperatures (Table 3). Therefore, more at-
tention should be paid to the increase in the UHII in the mainland of
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China. Somemitigation strategies should be considered, such as increas-
ing the vegetation cover (Peng et al., 2012; Yao et al., 2017a) and utiliz-
ing reflective pavement and roofs (Akbari and Matthews, 2012; Roman
et al., 2016).

5.3. Limitations

Some limitations exist in this study. First, this study validated the ac-
curacy of the estimated Ta and showed that the accuracy of the present
studywas higher than that ofmost previous studies. However, the accu-
racy of the CLUHII was not validated. The verification of the accuracy of
the CLUHII requires dense in situ Ta data. Most stations used in this
study are located in or around urban areas. It is hard to select enough
rural stations that are free from CLUHI effect to verify the accuracy of
CLUHI. Denser in situ Ta data are hard to obtain. Therefore, the accuracy
of the CLUHII should be verified in future works. Second, some drivers
(e.g., sky view factor and thermal admittance (Oke et al., 1991)) of
UHI were not analyzed in this work. This is because long time series,
high spatial resolution and national coverage of these data are hard to
obtain. These factors should be considered in future works.

6. Conclusions

In this study, the temporal trends of the CLUHII and SUHII and their
drivers were systematically revealed in the mainland of China for the
2001–2018 period. The Cubist model produced accurate Ta estimates,
with the MAE ranging from 0.289 °C to 0.455 °C. For 272 cities com-
bined, the increasing rate of the CLUHII ranged from 0.057 °C/decade
to 0.263 °C/decade (p < 0.01 in all cases). The SUHII also increased sig-
nificantly, except for the daytime SUHII in winter. Human activities
were the major driving forces of the increases in the CLUHII and
SUHII. The ΔPIS was significantly correlated with the CLUHII and SUHII
in approximately half of the cities, whereas meteorological factors
were significantly correlated with the CLUHII and SUHII in a few cities.

Overall, this study highlights the significant trends of increases in the
CLUHII andSUHII in themainlandof China. Future studies should: (1) in-
vestigate the trend of the CLUHI effect for a longer period; (2) further
improve the accuracy of Ta estimation, and validate the accuracy of
CLUHII; (3) analyze more drivers (e.g., sky view factor and thermal ad-
mittance) of UHI.
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Appendix A

Cubist is a rule-based regression model, which originates from the
M5 model tree and is an extension of the decision tree model. Cubist
does not generate a finalmodel, but produces a series of rules associated
with various models. Subsequently, a series of independent variables
will select a final model according to the fitting performance of the
rule. Cubist is originally a commercial software, but currently can be im-
plemented through R software and has been widely used in regression
and classification applications. In this study, Cubist algorithm was per-
formed using “Cubist” add-on package in R software. Parameters of
the Cubist model were tested and determined using “caret” add-on
package in R software.
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