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Information fusion of aerial images and LIDAR data in urban areas:
vector-stacking, re-classification and post-processing approaches

XIN HUANG*, LIANGPEI ZHANG and WEI GONG

The State Key Laboratory of Information Engineering in Surveying, Mapping

and Remote Sensing, Wuhan University, Wuhan, People’s Republic of China

(Received 2 June 2008; in final form 27 February 2009)

This research investigates information fusion approaches of high-resolution aerial

images and elevation data from Light Detection and Ranging (LIDAR) for urban-

environment mapping. Three feature fusion methods are proposed and compared:

(1) the vector-stacking approach that combines spectral and LIDAR features in

one classifier; (2) the re-classification approach that firstly processes spectral

signals in a classifier and then integrates its output with LIDAR features to obtain

the final result and (3) the post-processing approach that uses the LIDAR data to

refine the results of spectral classification. The height features used in the above

three algorithms are extracted from the LIDAR digital surface model (DSM)

image; these include elevation difference, maximum and minimum values, variance

and the grey-level co-occurrence matrix (GLCM) textures. In addition, the average

height from object-based segmentation is also computed. In the experiments,

support vector machines (SVMs) are used as classifiers for all fusion schemes

due to their capability and robustness for many classification problems. The

three algorithms are evaluated using a 40-cm spatial resolution digital orthophoto

and the corresponding LIDAR data of Odense, Denmark. In the experiments, the

vector-stacking method with the Maximum–Minimum (Max–Min) feature, the re-

classification method with the Max–Min feature and the post-processing approach

obtain promising results (94.7%, 95.0% and 94.6%, respectively), which are sig-

nificantly higher than the spectral-only classification (82.5%).

1. Introduction

In recent years, the processing techniques for very-high-resolution (VHR) imagery

have received much attention since this new data can provide a large amount of

detailed ground information. However, the availability of this type of data poses

challenges to image information extraction and classification (Huang et al. 2007a). It

increases the internal spectral variability (intra-class variability) of each land-cover

class, and decreases the spectral variability between different classes (inter-class

variability), which leads to a reduction in the statistical separability of the different
land-cover classes in the spectral domain (Bruzzone and Carlin 2006). The classifica-

tion of VHR data based on spectral features is insufficient due to the fact that some

different objects have similar spectral reflectances (e.g. buildings and streets, grass and

trees, water and shadow). Therefore, spatial features have been used to counter the

inadequacy of spectral signals, such as the grey-level co-occurrence matrix (GLCM)
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(Puissant et al. 2005, Dell’Acqua and Gamba 2006, Huang et al. 2007b), shape and

structural features (Benediktsson et al. 2005, Huang et al. 2007a) and object-based

analysis (Gao et al. 2006, Huang and Zhang 2008).

The objective of this study is to consider Light Detection and Ranging (LIDAR)

data as a complementary source of spectral signals to increase the accuracy of land-
cover mapping in urban environments. Some studies have been reported to fuse

LIDAR and high-resolution imagery for urban-feature classification. Gamba and

Houshmand (2002) used the Fuzzy C-means approach for joint classification of aerial

photo and LIDAR data with four classes (buildings, vegetation, roads and open

areas). The results showed that the joint classification gave much higher accuracy

than the purely spectral method (the overall accuracy increased from 68.9% to 79.5%).

By adding the LIDAR image, the commission accuracies for roads, open areas and

buildings were significantly improved, while the accuracy for the vegetation decreased
slightly. Hodgson et al. (2003) mapped and evaluated the imperviousness of land

parcels using high-spatial-resolution colour orthophotography and surface-cover

height extracted from LIDAR data. Experiments revealed that the maximum-

likelihood per-pixel classification yielded a low standard error (6.62%), while a per-

segment approach with a rule-based classification resulted in slightly better errors

(5.85%). Nguyen et al. (2005) considered LIDAR data as an additional source of

information in the Hopfield neural network (HNN). A height function based on the

Gaussian distribution was added to the energy function of the HNN for super-
resolution mapping. Secord and Zakhor (2007) presented an approach for tree detec-

tion in registered aerial and range data obtained via LIDAR. A region-growing

algorithm was used to segment the image and some features extracted from the

LIDAR image (e.g. height value, local height variation) were employed for classifica-

tion. Geerling et al. (2007) integrated the Compact Airborne Spectrographic Imager

(CASI) and LIDAR to classify different vegetation classes. The spectral information

from the CASI channels was stacked with the texture bands extracted from the

LIDAR image using the maximum-likelihood classifier. Results showed that fusion
of CASI and LIDAR data could improve the classification significantly more than

using spectral or LIDAR information alone.

In this research, we focus on feature-extraction algorithms from LIDAR data and

spectral-LIDAR information fusion approaches. Support vector machines (SVMs)

are used as classifiers of the fusion because they are non-parametric and fast-learning

algorithms and are not constrained to prior assumptions about the distribution of

input data; hence, they are well suited for multisource data. In this paper, three fusion

methods are designed as follows:

1. Vector stacking: the statistical and textural features are extracted from the

LIDAR digital surface model (DSM) image and then combined with spectral

features in an SVM classifier. In this study, the texture measures of GLCM,

height difference, height variance and Maximum–Minimum (Max–Min) values

within a local area are extracted from the LIDAR image. In addition, the

average height resulting from an object-based segmentation is also calculated.

2. Re-classification: the spectral features from the aerial image are firstly classified
using an SVM, and its output is then integrated with the textural and statistical

features in a second SVM.

3. Post-processing: the height information is used to refine the results of spectral

classification and separate the classes with similar spectral responses.
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The experiments were conducted on a 40-cm aerial orthophoto and the correspond-

ing LIDAR DSM image of Odense in Denmark.

2. SVMs

SVMs discriminate between two classes by fitting an optimal separating hyperplane

(OSH) to the training samples in a multidimensional feature space (Cortes and

Vapnik 1995). SVM classifiers of the form f ðxÞ ¼ w � xþ b learn from the data

fðxi; yiÞ xi 2 Rd ;
�� yi 2 f�1;þ1gg, where xi represents the ith training sample in a

d-dimensional feature space, Rd, and yi is the corresponding class label. f(x) is the

discriminant function associated with the hyperplane and is defined by a weight vector

w and a bias term b, with bj j= wk k representing the distance between the OSH and the

origin. The support vectors lie on two hyperplanes w � xþ b ¼ �1 that are parallel to
the OSH. The OSH is calculated by maximizing the margin of the two hyperplanes

and minimizing the error:

min
w;b;xi

wk k2

2
þ C

XT

i¼1

xi

( )
; (1)

where T is the number of training samples, and the slack variables xi and the

regularization parameter C are introduced to take into account non-separable data.

The constant C is used as a penalty for the samples that are located on the wrong side

of the hyperplane, and it controls the shape of the discriminant function. The mini-

mization problem in equation (1) can be solved through a Lagrange dual optimiza-

tion, and the final hyperplane decision function can be defined using the kernel

methods:

f ðxÞ ¼
X
i2S

ai yi Fðxi; xjÞ þ b

 !
; (2)

where F(�) is a kernel function and ai are Lagrange multipliers. S is the set of support

vectors, which is the subset of training samples corresponding to the non-zero

Lagrange multipliers. The kernel function is introduced into the SVM so that the
original input space can be transformed non-linearly into a higher dimensional

feature space where linear methods may be applied. A Gaussian radial basis function

(RBF) is used in this study since it has been proved effective in many classification

problems (Bruzzone and Carlin 2006):

Fðxi; xjÞ ¼ expð�� xi � xj

�� ��2Þ; (3)

where � is the RBF kernel parameter. A specific application for the SVM needs to
handle two issues: the parameter optimization and the multiclass problem.

1. Parameter optimization: the kernel-based implementation of the SVM involves

problems pertaining to the selection of multiple parameters, that is, the kernel

parameter � and the regularization parameter C. In this study, these parameters

were selected automatically based on the leave-one-out model selection

(LOOMS) algorithm (Lee and Lin 2000). This approach is based on the idea

of estimating the parameters so that the estimate of the expected generalization
error is minimized. Optimization is carried out using a gradient descent search
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over the space of the parameters. The search was conducted between 0.1 and

1000 for C and from 0.01 to 100 for �.

2. Multiclass problem: the SVM was originally designed for binary classification;

however, most remote-sensing applications involve multiple classes. Two stra-

tegies are commonly used for extending SVMs to multiclass classifications: one-
against-one (OAO) and one-against-all (OAA) (Foody and Mathur 2004). The

OAO strategy applies a series of classifiers to each pair of classes, with the most

commonly computed class reserved for the final label of each pixel. For the

OAA algorithm, the K-class problem is decomposed into K binary classifiers,

each focused on the recognition of one class against all the others. The final

class label is determined using the maximum decision function value (i.e. the

distance to the hyperplane).

3. Methods for aerial images and LIDAR information fusion

SVM-based multisource information fusion can be implemented in three levels: the

feature level (vector stacking), the multiclass output level (re-classification) and the

decision level (post-processing). The flow charts for the three algorithms are shown in

figure 1.

3.1 Feature-level fusion: vector stacking

Vector stacking is a straightforward fusion method. Spectral signals from the aerial

image are concatenated with elevation features from the LIDAR data in feature

space, and the hybrid feature vectors are then classified using a multiclass SVM

classifier. The processing flow is shown in figure 1(a). Let F spe and F ele be the feature

sets of spectral and elevation information extracted from aerial and LIDAR data,

respectively. The vector-stacking approach can be described as:

Figure 1. Flow charts for the three fusion algorithms (a) the vector-stacking, (b)
re-classification and (c) post-processing approaches.
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x 2 k, k ¼ ClaðFðxÞÞ; with FðxÞ ¼ F
speðxÞ ¨ F

eleðxÞ
� �

; (4)

where ClaðFðxÞÞ denotes the decision label of input vector x, with the feature set F(x),

and k is the class label (1 � k � K). There are two important issues for the vector-

stacking fusion. The first one is how to exploit the information from the LIDAR data

effectively. Due to the fact that anything can occur at any height, it is not reasonable

to assume that features with the same spectral property have the same or different
heights. Therefore, in this study, some statistical and textural features are extracted

from the LIDAR DSM image. The other issue is the classifier for the hybrid and

multisource information. The SVM classifier is a fast and robust machine-learning

algorithm and is insensitive to the prior-distribution assumption. Furthermore, it can

always find the optimal solution and enable the weighting of the different sources.

Therefore, it is worthwhile testing its performance for aerial-LIDAR data fusion.

In this research, the statistical and textural features extracted from the LIDAR

image include elevation difference, elevation variance, Max–Min values and GLCM
measures. In addition, the average height resulting from the object-based segmenta-

tion is also considered.

3.1.1 Statistical features. Elevation difference (Diff) and elevation variance (Var)

describe the local height variation. Diff is defined as the difference between the

maximum and minimum height value in a local region, while Var is the variance of

height values in the region. Due to the complex structures and the multiple returns of
laser pulse, the height variation features are expected to discriminate trees with other

solid or homogeneous object, such as roofs and grass. In addition, the maximum and

minimum values in the local area are calculated. The Max–Min feature is capable of

reducing local height variation, representing main characteristics in this area and

delineating the shape and structures of objects.

3.1.2 Textural features. Textural attributes are extracted using the GLCM

(Puissant et al. 2005, Huang et al. 2007b). The GLCM is a tabulation of how often
different combinations of pixel grey levels occur in a local area. In this research,

GLCM texture statistics are calculated based on the LIDAR DSM image with an

inter-pixel distance of 1 and with different window sizes. The directional effects are

removed by averaging the extracted features over four directions. Four measures,

homogeneity (HOM), angular second moment (ASM), entropy (ENT) and dissim-

ilarity (DIS), are chosen to describe the texture information of the LIDAR image:

HOM ¼
X

i

X
j

Pði; jÞ
1þ ði � jÞ2

; ASM ¼
X

i

X
j

ðPði; jÞÞ2;

ENT ¼ �
X

i

X
j

Pði; jÞ lnðPði; jÞÞ and DIS ¼ �
X

i

X
j

Pði; jÞ i � jj j;
(5)

where (i, j) is the coordinate in the co-occurrence matrix space and P(i, j) is the co-
occurrence matrix value at (i, j). Homogeneity is a measure of lack of variability or the

amount of local similarity, and angular second moment is also a measure of local

homogeneity. Correspondingly, entropy and dissimilarity are heterogeneity indices.

Entropy is a measure of the degree of disorder in an image, and dissimilarity repre-

sents the degree of spread of the grey levels or the average grey-level difference

between neighbouring pixels. Dissimilarity and homogeneity are inversely correlated.

It is interesting to test the performance of GLCM values on LIDAR data since there is
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a variation of height for tree objects but no variation for other classes. The informa-

tion of height variation is potential to distinguish buildings and grasses, which have

homogeneous height, from trees, which have textured height information.

3.1.3 Object-based approach. The object-based analysis aims to group the spatially

adjacent pixels into homogeneous objects and it has been successfully applied to the

VHR image processing. In this study, the object-based analysis is used to segment the

image first, and the average height within each image segment is then extracted. The

object-based approach is able to reduce local elevation variation and generalize

elevation information in a spatial neighbour. In experiments, the fractal net evolution
approach (FNEA) (Hay et al. 2003) is employed for segmentation. It uses fuzzy-set

theory to extract the objects of interest, at the scale of interest, segmenting images

simultaneously at both fine and coarse scales (Hay et al. 2003). The FNEA is a

bottom-up region merging technique starting from a single pixel. In an iterative

way, at each subsequent step, image objects are merged into larger ones. The region

merging decision is made with local homogeneity criteria. When a possible merge of a

pair of image objects is examined, the fusion heterogeneity value between the two

objects is calculated and compared to a pre-defined scale parameter.

3.2 SVM output-level fusion: re-classification

The re-classification method integrates the elevation features extracted from LIDAR

data and the output of the SVM with only an aerial image (SVM1) in a second SVM

(SVM2). The flow chart is shown in figure 1(b). The re-classification method can be

defined as:

x 2 k, k ¼ ClaðFðxÞÞ with Cla ¼ SVM2 and FðxÞ ¼ O
speðxÞ ¨ F

eleðxÞ
� �

; (6)

where OspeðxÞ denotes the output of SVM1 and F eleðxÞ represents the elevation

features extracted from the LIDAR DSM image. In terms of the outputs of SVM1,

the re-classification method can be divided into two schemes, namely crisp and soft

re-classifications. The crisp method fuses the elevation features and the class label of
each pixel output by SVM1, while the soft approach combines the elevation features

and the multiclass output of SVM1, which are the discriminant function values

defined in equation (2) (i.e. the distance between the sample point and the

hyperplane).

The re-classification can be considered as a second classification by integrating the

height features and the results of pre-classification. The soft output of SVM1 can be

regarded as a class-specific data transformation, by which, the image data are trans-

formed into a new feature space that is made up of the distance values of the individual
SVM rule images. The multiclass output results are better comparable than the

original feature space and are more appropriate to represent the inter-class difference

(Waske and van der Linden 2008). Therefore, it is worth testing whether the SVM

re-classification approach can integrate spectral and LIDAR features effectively.

3.3 Decision-level fusion: post-processing

The basic idea of decision fusion is to exploit the elevation features from LIDAR data to

improve the spectral classification (figure 1(c)). The spectral classification is firstly

performed by implementing the SVM classifier on the aerial image, and then its result
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is refined using the conditional probability of height distribution. In this study, the

average height features within each segment are used for classification refinement, and

the elevation feature of each land-cover class is modelled as a Gaussian distribution:

Pðk hðxÞj Þ ¼ 1ffiffiffiffiffiffi
2p
p

�k

exp �ðhðxÞ � mkÞ
2

2 �k
2

 !
; (7)

where P(�) denotes probability, h(x) is the elevation information of point x and mk and

�k are the mean and standard deviation of class k, respectively. The parameters in

equation (7) are estimated based on training samples. The probability functions are

used to discriminate the classes with similar spectral response but with different height
characteristics; consequently, the post-processing method can be described as:

x 2 k, k ¼ arg max
c2c

h

Pðch hðxj ÞÞh i; for x 2 c ¼ ch½ �Hh¼1

� �
; (8)

where c represents the set of spectrally similar classes (c1,. . .,ch,. . .,cH).

The post-processing approach is based on the assumption that some classes

(e.g. trees and buildings) are higher than their surroundings and hence the height

distribution is used to discriminate some spectrally similar classes and improve the
results of spectral classification.

4. Experiments and analysis

Experiments were conducted on a 40-cm spatial resolution digital orthophoto of

Odense provided in 1999 by COWI, Denmark (figure 2(a)) and the co-registered
DSM image acquired by LIDAR TopoSys in 2001 (figure 2(b)). Three visible channels

were available for the aerial orthophoto. The LIDAR data were produced by the

second return of the laser pulse. The accuracy of the DSM was 15 cm (vertical) and 50

cm (planimetric). The image is used as demonstration data for the eCognition soft-

ware (Trimble Navigation Ltd, Sunnyvale, CA, USA). This dataset shows a typical

Figure 2. (a) 1021� 1021 pixel digital orthophoto and (b) LIDAR DSM image.
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urban environment. Five information classes are defined in this area: low-lying

impervious area (ground), high-lying impervious area (buildings), grass, trees and
shadow, where ground and buildings and grass and trees have similar spectral

attributes. The available training and test samples are provided in table 1. The

samples have a uniform distribution all around the scene, and they are converted to

regions of interest on the co-registered aerial and LIDAR images. In this work, the

commercial software eCognition was used to implement the object-based segmenta-

tion and obtain the average height information from LIDAR image. The crisp and

soft outputs of the SVM were implemented based on ENVI 4.4 (ITT Visual

Information Solutions, Boulder, CO, USA).
The objectives of the experiment are to evaluate the three fusion methods with

different parameters and find an appropriate way to fuse the LIDAR and aerial

images. In order to validate the information-fusion algorithms, the spectral classifica-

tion is used as a benchmark, and its classification map and confusion matrix are

shown in figure 3 and table 2(a), respectively. By analysing the results, it can be seen

Table 1. Number of training and test samples.

Class Number of training samples Number of test samples

Ground 100 2252
Grass 93 2206
Shadow 107 1751
Buildings 101 2198
Trees 101 1832
Total 502 10 239

Ground Grass Buildings Shadow Trees

Figure 3. Map of spectral-only classification obtained by performing SVMs on the aerial
image (overall accuracy ¼ 82.5%).
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that misclassifications mainly occur in ground and buildings and trees and grass, as

they show similar spectral reflectance.

4.1 Experiments of vector-stacking fusion

This section aims to evaluate the performance of different features with different

parameters for the vector-stacking fusion. In order to analyse the window-size effects,

we computed the statistical and textural features with different sizes of moving

windows (from 3� 3 to 21� 21). The overall accuracy (OA) based on the confusion

matrix was used to assess the algorithms. Figure 4 shows the accuracies of the

Table 2. Confusion matrices for: (a) the spectral-only classification approach (figure 3); (b) the
soft re-classification approach with Max–Min feature (figure 6); and (c) the post-processing

approach (figure 7(a)).

(a)
Class Ground Grass Shadow Buildings Trees Total

Ground 1756 1 0 623 5 2385

Grass 0 2136 0 1 476 2613

Shadow 0 0 1742 2 4 1748

Buildings 496 0 9 1468 0 1973

Trees 0 69 0 104 1347 1520

Total 2252 2206 1751 2198 1832 10 239

Overall accuracy ¼ 82.5%, Kappa coefficient ¼ 0.781.

(b)
Class Ground Grass Shadow Buildings Trees Total

Ground 2231 0 0 87 1 2319

Grass 0 2201 0 0 232 2433

Shadow 0 0 1745 1 1 1747

Buildings 21 0 6 2098 146 2271

Trees 0 5 0 12 1452 1469

Total 2252 2206 1751 2198 1832 10 239

Overall accuracy ¼ 95.0%, Kappa coefficient ¼ 0.937.

(c)
Class Ground Grass Shadow Buildings Trees Total

Ground 2246 1 9 57 5 2318

Grass 0 2136 0 0 297 2433

Shadow 0 0 1742 2 2 1746

Buildings 6 0 0 2031 0 2037

Trees 0 69 0 108 1528 1705

Total 2252 2206 1751 2198 1832 10 239

Overall accuracy ¼ 94.6%, Kappa coefficient ¼ 0.932.
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statistical and GLCM textural features with different windows, respectively. In both

figures, ‘NA’ on the horizontal axis denotes the spectral-only classification (OA ¼
82.5%). By analysing figure 4(a), it is interesting to find that the Max–Min statistic

obviously outperformed other features such as height difference and variance. The

Max–Min operator with a 13� 13 window size gave very promising accuracies (OA¼
94.7% and Kappa coefficient ¼ 0.934). The reasons may be that it can effectively

describe the main characteristics in a local region, and it is able to reduce local height

variation and hence improve the classification in homogeneous textures
(e.g. buildings, grass). In addition, it helps to reduce the effects resulting from the

returns of the laser pulse in trees. On the other hand, Diff with an 11� 11 window

gave 88.9% for OA and 0.861 for Kappa, which were also satisfactory. As for the

height variance (Var), it did not achieve significantly higher accuracies than the

spectral classification (82.5%). The best result of Var was 85.1% for OA and 0.813

for Kappa with a 13� 13 window. By looking at figure 4(b), it can be found that

homogeneity measures (e.g. HOM and ASM) gave comparable results with the

96
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Figure 4. (a) Overall accuracy (OA) of different statistical measures (variance (Var), height
difference (Diff) and maximum–minimum values (Max–Min)) for different window sizes. (b)
OA of different GLCM textures (ASM, HOM, DIS and ENT) with different windows.
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heterogeneity measures (e.g. DIS and ENT). The HOM feature with a 19 � 19

window achieved the highest accuracies: 90.2% for OA and 0.877 for Kappa.
The class-specific accuracies for the spectral classification, Max–Min feature with a

13� 13 window, the HOM textural measure with a 19� 19 window and the average

height information (Ave-H) extracted by the object-based segmentation are com-

pared in table 3. In the table, ‘�’ denotes the accuracy variation between vector-

stacking fusion and the spectral classification and ‘AA’ is the average accuracy of all

the information classes. From table 3, it can be seen that, compared to the spectral

classification, the improvements of OA are 7.7%, 7.7% and 12.2% for the HOM, Ave-

H and Max–Min features, respectively, and the respective improvements of AA are
6.5%, 6.6% and 11.4%. It is worth noting that only the Max–Min feature can improve

the accuracies of all the classes. It increased the accuracies of the impervious areas

substantially, by 20.9% and 29.6% for ground and buildings, respectively. Meanwhile,

the accuracies of vegetation were increased by 2.9% for grass and 3.4% for trees.

4.2 Experiments of the re-classification approach

In this experiment, the crisp and soft re-classifications were implemented using
different statistical measures (including height difference, height variance,

Max–Min values), GLCM texture and average height. The statistical measures were

calculated using a 13� 13 window, and GLCM texture was computed using the

homogeneity feature with a 19� 19 window. The OA of the crisp and soft

Table 3. Class-specific accuracies of different features for vector-stacking fusion. All values are
percentages (%).

Spectral
HOM (19� 19) Ave-H Max–Min (13� 13)

Class method Accuracy � (%) Accuracy � (%) Accuracy � (%)

Ground 78.0 72.3 -5.7 99.5 21.5 98.9 20.9
Grass 96.8 99.1 2.3 95.5 -1.3 99.7 2.9
Shadow 99.5 99.7 0.2 99.7 0.2 99.6 0.1
Buildings 66.8 89.9 23.1 94.3 27.5 96.4 29.6
Trees 73.5 86.0 12.5 58.4 -15.1 76.9 3.4
OA (%) 82.5 90.2 7.7 90.2 7.7 94.7 12.2
AA (%) 82.9 89.4 6.5 89.5 6.6 94.3 11.4

Figure 5. Accuracies of crisp and soft re-classifications for different features.
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re-classifications for different features is shown in figure 5. By looking at the figure,

we can find two interesting conclusions: (1) the Max–Min feature gives the highest

accuracies for both crisp and soft methods, which verifies its effectiveness for feature

extraction from LIDAR data and (2) the soft re-classification obviously outperforms

the crisp one and the accuracy improvements were 7.2%, 8.8%, 2.3%, 8.1% and 0.8%

for Var, Diff, Max–Min, HOM and Ave-H features, respectively. The results reveal

that the decision function output of multiclass SVMs is more appropriate for informa-
tion fusion than the label output by the same SVM. The soft re-classification with the

Max–Min feature obtains satisfactory results: 95.0% for OA and 0.937 for the Kappa

coefficient, and its classification map and confusion matrix are shown in figure 6 and

table 2(b).

4.3 Experiments of the post-processing approach

For the post-processing approach, we should predefine the spectrally similar groups
according to equation (8). The image was firstly classified into impervious areas,

vegetation and shadow using the aerial image alone. The impervious areas included

two spectrally similar classes: ground (low-lying impervious area) and buildings (high-

lying impervious area), while the vegetation was then divided into grass and trees. The

post-processing method was based on the conditional probabilities (equation (7))

that were estimated based on the training samples. The confusion matrix for the

post-processing method is provided in table 2(c) and the classification map is shown in

figure 7(a). From the results, it can be stated that the post-processing approach
achieved satisfactory classification (OA ¼ 94.6%, Kappa ¼ 0.932). Compared to

the spectral-only classification, the improvements of the OA and Kappa coefficient

are 12.1% and 0.151, respectively. Figure 7(b) shows where the post-processing

method improves the result of the spectral classification. The classes C1, C2 and C3

represent the building, tree and ground areas that were correctly classified using the

Figure 6. Classification map for soft re-classification approach with Max–Min feature (over-
all accuracy ¼ 95.0%).
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post-processing algorithm, but were wrongly identified using the spectral classifica-

tion, respectively. C4 is unchanged pixels. It can be observed that the many wrongly

identified pixels by the spectral classification were corrected by the post-processing

approach.

4.4 Comparison of the three fusion schemes

In this experiment, the Max–Min operator was used to compare different fusion

schemes. The class-specific accuracies for the three fusion methods are given in
table 4. In the table, all the fusion algorithms achieve satisfactory accuracies (about

95.0%). They integrate aerial and LIDAR data effectively and hence separate the

spectrally similar classes. By summarizing the above experiments, it can be found

that, although the vector-stacking and soft re-classification methods gave very

promising results, they are dependent on the features used (e.g. the Max–Min

feature gave the best accuracies in this study). With respect to the post-processing

method, some prior knowledge about the test area is needed and then the spectrally

similar classes can be distinguished correctly. The vector-stacking and soft re-
classification approaches with the same features are compared in figure 8. For each

feature, the soft re-classification approach slightly outperformed the vector-stacking

method, and accuracy improvements are 4.2%, 2.2%, 0.3%, 0% and 0.7% for Var,

Diff, Max–Min, HOM and Ave-H, respectively. These improvements are marginal

and they come at a greater computational cost of an additional SVM. Therefore, the

re-classification method should be confined to where the performance is of most

importance.

Figure 7. (a) classification map obtained by the post-processing approach (OA ¼ 94.6%). (b)
Improvement of the results of the spectral classification using the LIDAR-based post-
processing approach. C1, C2 and C3 represent the building, tree and ground areas that were
correctly classified using the post-processing algorithm, but were wrongly identified using the
spectral classification, respectively. C4 is unchanged pixels.
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5. Conclusions

This study has investigated the aerial and LIDAR data fusion approaches for urban

mapping. To this end, three fusion schemes were proposed: the vector-stacking

method in feature space, the crisp and soft re-classifications methods and the post-

processing method for refinement. These fusion schemes were carried out and com-
pared to a 40-cm spatial resolution digital orthophoto and a co-registered LIDAR

DSM image of Odense, Denmark. Based on the experiments, the following conclu-

sions can be drawn.

1. For the vector-stacking fusion, the height difference, average height, GLCM

textures and Max–Min features gave much better results than the spectral-only

classification. The Max–Min statistic with a 13� 13 window achieved very

promising results (94.7%) because it is able to describe the main characteristics
in a local region and reduce the effects of laser returns in heterogeneous areas. It

is interesting to observe that, among all the features, only the Max–Min can

increase the accuracies of all the classes at the same time.

2. The re-classification approaches are categorized into crisp and soft ones

according to the different outputs of the SVM. Experiments revealed that the

soft re-classification method obviously outperformed the crisp one because the

96 Vector stacking

Soft re-classification94

92

90

88

O
A

(%
)

86

84

82

80
Var Diff Max–Min HOM Ave-H

Figure 8. Comparison of vector-stacking and soft re-classification approaches with the same
features used.

Table 4. Comparison of class-specific accuracies for the three fusion schemes. All values are
percentages (%).

Spectral
Vector stacking Re-classification Post-processing

Class method Accuracy � (%) Accuracy � (%) Accuracy � (%)

Ground 78.0 98.9 20.9 99.1 21.1 99.7 21.7
Grass 96.8 99.7 2.9 99.8 3.0 96.8 0
Shadow 99.5 99.6 0.1 99.7 0.2 99.5 0
Buildings 66.8 96.4 29.6 95.5 28.7 92.4 25.6
Trees 73.5 76.9 3.4 79.3 5.8 83.4 9.9
OA (%) 82.5 94.7 12.2 95.0 12.5 94.6 12.1
AA (%) 82.9 94.3 11.4 94.7 11.8 94.4 11.5
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former exploited the discriminant function values of the multiclass SVM, but

the crisp method only considered the classification label. A reasonable explana-

tion for this phenomenon is that the discriminant function output can be

regarded as a class-specific data transformation and they are more efficient to

represent the inter-class difference. Furthermore, using crisp results actually
outweighs the spectral-only classification outcome for the second stage, which

then downplays the role of LIDAR data to some extent.

3. The post-processing approach achieved satisfactory accuracy (94.6%) since the

conditional probabilities obtained from the LIDAR data were used to refine the

pre-classification and discriminate the spectrally similar classes effectively.

4. By comparing the performance of different features, it can be found that the

Max–Min statistic is very efficient for feature extraction from the LIDAR data

since it gave the best accuracies in both the vector-stacking and re-classification
schemes. With respect to the different fusion methods, it can be stated that the

vector-stacking and re-classification schemes are related to the features used

(e.g. Max–Min), while the post-processing approach is dependent on the prior

knowledge for the test areas. With the same features, the soft re-classification

method slightly outperformed the vector-stacking method, but the improve-

ments came at the expense of greater computational time for an additional

SVM. Therefore, the vector-stacking method is suggested when both time and

accuracy are considered, while the re-classification method should be confined
to where the performance is of most importance.

The proposed fusion algorithms have potential for not only optical-LIDAR data,

but also for information fusion of other multisensors. In future, we plan to use these

fusion approaches to integrate the spectral information from the optical sensor and
the textural characteristics from the synthetic aperture radar data. Similarly, it is also

interesting to fuse the rich spatial feature from the panchromatic image and the

spectral information from the multispectral channels. In addition, we also plan to

extend our work to rural areas (e.g. farmlands, agriculture).
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