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An SVM Ensemble Approach Combining Spectral,
Structural, and Semantic Features for the
Classification of High-Resolution
Remotely Sensed Imagery
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Abstract—In recent years, the resolution of remotely sensed im-
agery has become increasingly high in both the spectral and spatial
domains, which simultaneously provides more plentiful spectral
and spatial information. Accordingly, the accurate interpretation
of high-resolution imagery depends on effective integration of the
spectral, structural and semantic features contained in the images.
In this paper, we propose a new multifeature model, aiming to
construct a support vector machine (SVM) ensemble combining
multiple spectral and spatial features at both pixel and object
levels. The features employed in this study include a gray-level co-
occurrence matrix, differential morphological profiles, and an
urban complexity index. Subsequently, three algorithms are pro-
posed to integrate the multifeature SVMs: certainty voting,
probabilistic fusion, and an object-based semantic approach, re-
spectively. The proposed algorithms are compared with other
multifeature SVM methods including the vector stacking, feature
selection, and composite kernels. Experiments are conducted on
the hyperspectral digital imagery collection experiment DC Mall
data set and two WorldView-2 data sets. It is found that the
multifeature model with semantic-based postprocessing provides
more accurate classification results (an accuracy improvement of
1-4% for the three experimental data sets) compared to the voting
and probabilistic models.

Index Terms—Classification, feature extraction, high resolution,
morphological, multifeature, object-based, semantic, support vec-
tor machines (SVMs), World View-2.

I. INTRODUCTION

N RECENT years, with the rapid development of space

imaging techniques, remote sensors can provide high-
resolution Earth observation data in both the spectral and
spatial domains at the same time. Some airborne platforms,
such as the hyperspectral digital imagery collection experiment
(HYDICE), hyperspectral mapper, and reflective optics systems
imaging spectrometer, provide multi/hyperspectral channels
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(100-300 bands) with a spatial resolution of 1-5 m. More
interestingly, the recently launched WorldView-2 satellite [1],
based on a spaceborne platform, is able to provide eight multi-
spectral bands with a 2-m spatial resolution. This new type of
high-resolution imagery contains detailed ground information
in both the spectral and spatial domains; it therefore opens
new avenues for remote sensing applications in urban mapping,
forest monitoring, environment management, precision agricul-
ture, and security and defense issues, etc.

However, it should be noted that higher resolutions do not
naturally result in higher interpretation accuracies. On the one
hand, the classification of hyperspectral images is subject to the
so-called Hughes phenomenon, or the curse of dimensionality
problem, due to the small ratio between the number of training
samples and the number of features [2]. In other words, the
high redundancy between hyperspectral bands with increasing
spectral dimensionality might cause problems during data anal-
ysis, e.g., reduction of classification accuracy, particularly in
the case of a small sample size [3]. On the other hand, the
classification of high spatial resolution images suffers from
uncertainty of the spectral information because the increase of
the intra-class variance and decrease of the inter-class variance
lead to a decrease of the separability in the spectral domain,
particularly for the spectrally similar classes [4]. Taking into
account the aforementioned two aspects, it is widely agreed
that the accurate interpretation of multi/hyperspectral imagery
with high spatial resolution relies on effective spectral-spatial
joint feature extraction and classification. Accordingly, in re-
cent years, a few studies have been reported on this topic.
Dell’ Acqua et al. presented a first assessment of spatial analysis
algorithms for detailed urban classification of high-resolution
hyperspectral data [5]. The experimental results verified the
better performance of spatial classification compared to the
pure spectral method. Benediktsson et al. proposed extended
morphological profiles (EMP) for the classification of urban hy-
perspectral data with a high spatial resolution [6]. The principal
components (PCs) of the hyperspectral imagery were used as
base images for the construction of MPs, and, subsequently, the
spectral PCs stacked with the EMP were input into a neural
network classifier. Fauvel et al. [7] improved the method in [6]
by concatenating the hyperspectral information and the MPs
into one feature vector, since the original method did not fully
utilize the spectral information in the data. Chini et al. [8]
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TABLE 1
RECENT LITERATURE ON MULTIFEATURE FUSION FOR THE CLASSIFICATION OF HIGH-RESOLUTION REMOTELY SENSED
IMAGERY (DR = DIMENSIONALITY REDUCTION, NWFE = NONPARAMETRIC WEIGHTED FEATURE EXTRACTION,
DBFE = DECISION BOUNDARY FEATURE EXTRACTION, RFE = RECURSIVE FEATURE ELIMINATION)

Literature Classitier DR Method Multifeature

Benediktsson et al. [6] Neural network NWEFE [18] Spectral and EMP

Fauvel et al. [7] SVM DBFE [18] Spectral and EMP
Bruzzone and Carlin [2] SVM NA Spectral and multilevel

object-based features
Tuiaet al. [19] SVM RFE [20] Spectral and morphological features
Tuiaet al. [21] SVM NA Spectral and morphological features
(composite kernels)
Tuia et al. [22] SVM Correlation filter, ~Spectral, morphological features,

(multi-kernels)
Semisupervised
SVM
Neural network

Tuiaet al. [23]
Pacifici et al. [24]
Chen et al. [25] SVM

Bau et al. [27] Mahalanobis distance

[28]

Huang et al. [29] SVM
Huang et al. [30] SVM
Huang and Zhang [31] SVM

and RFE
NA

and multisource data
Spectral and morphological features

Neural network GLCM textures

pruning

Bhattacharyya Spectral magnitude and shape
distance [26] features
Mahalanobis Spectral and Gabor features
distance [28]

NA Spectral and structural feature set

NA Spectral and wavelet features

NA Spectral and multiscale features

extended the MPs by implementing a series of anisotropic
structural elements with a triangular shape. The anisotropic
morphological features were then selected and classified using
a multilayer perceptron neural network. Dalla Mura et al. [9]
proposed to characterize the spatial information of high-
resolution data by using a multilevel, multi-attribute approach
(e.g., area, moment of inertia, and standard deviation) based
on morphological attribute filters, leading to a more complete
description of the scene and to a more accurate modeling of
the spatial information than the traditional MPs. Subsequently,
they extended the attribute profiles to the classification of hy-
perspectral images by implementing the transformation on the
spectral independent components [10]. Huang and Zhang [11]
conducted a comparative study of spatial approaches for ur-
ban mapping, using hyperspectral imagery with a high spatial
resolution from Pavia City, northern Italy. Different spectral-
spatial feature extraction and classification methods were im-
plemented, including differential MPs (DMPs) [12], gray-
level co-occurrence matrix (GLCM), pixel shape index (PSI)
[13], object-based classification using the fractal net evolu-
tion approach [14], and the multiscale mean-shift procedure
[15]. Results showed that the spectral-spatial approaches could
effectively improve the mapping accuracy of pure spectral
classification. In addition, the DMP and the multiscale mean-
shift approach achieved better performance compared to other
spectral-spatial methods. Recently, Tarabalka ef al. [16] pro-
posed the use of probability estimates obtained by the support
vector machine (SVM) classification, in order to determine
the most reliable classified pixels as seeds of spatial regions.
Subsequently, the rest of the pixels were classified by con-
structing a minimum spanning forest on the reliable pixels. This
spectral-spatial classification method was further improved by
performing a multiple classification scheme on the selection of
reliable pixels [17].

By summarizing the existing literature, it can be found that
all the studies underline the important role of spatial informa-
tion for the classification of high-resolution imagery. However,

it should be recognized that although various spatial features are
currently available for high-resolution image processing, such
as morphological features [6]-[10], [12], structural feature set
[29], PSI[13], wavelet-based texture [30], object-based features
[32], and GLCM [4], [33], it is impossible to find one fea-
ture that is optimal for different image scenes. The traditional
approach for addressing this issue is to use a vector stacking
(VS) approach for the integration of multiple features, i.e.,
concatenate the multiple features and feed them into a classifier
with a preprocessing of dimensionality reduction (see Table I).
VS is frequently used for multifeature fusion as it is simple to
carry out and is potential to enhance the separability between
similar objects by forming a hyperdimensional multifeature
space [31]. Furthermore, the VS approach is often jointly used
with an SVM classifier since SVM is not constrained to prior
assumptions on the distribution of input data, and it enables the
weighting of the different features [34].

Although the existing studies show that “VS-SVM?” is a fea-
sible approach for multifeature fusion, it has several drawbacks.
Calculation of the spatial features, such as the GLCM, DMP,
and wavelet features, in most cases leads to hyperdimensional
feature space since spatial features refer to different parameters
such as sizes, scales, and directions. However, a recent study
shows that the classification accuracy by an SVM varies as a
function of the number of features used, and the accuracy may
decline significantly with the addition of features [35]. There-
fore, the VS approach does not necessarily result in the opti-
mal performance for multifeature classification. Furthermore,
although a feature selection algorithm is used as preprocessing
for optimization of the hyperdimensional feature space, it is
difficult to determine the appropriate number of the feature
dimensionality.

In this context, we propose an SVM-based multiclassifier
system combining a series of spectral and spatial features for
high-resolution image classification. It is able to take advantage
of multiple features and overcome the Hughes effect [36] and
the over-fitting problem produced by the hyperdimensional
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stacked feature space. The multiclassifier system has been
applied to classification of hyperspectral images [3], [37],
multisource data [38], and high-resolution urban images [39].
However, few studies use the multiclassifier system to simulta-
neously integrate the spectral, structural and semantic features
at both pixel and object levels. The contribution of this study
lies in a systematic combination of the spectral-spatial multi-
features coupled with a series of SVM classifiers, as described
in the following three algorithms.

e Algorithm 1 (certainty voting): According to the decision
results of the single-feature SVMs, the pixels in an image
are separated into reliable and unreliable ones. The labels
of reliable pixels are identified by majority voting of
the SVMs, while the classification of unreliable pixels is
performed by comparing the classification certainty degree
[40] of the single-feature SVMs. This algorithm is written
as C-voting in the following text.

e Algorithm 2 (probabilistic fusion): The certainty degree
of each single-feature SVM is used as the weight of
the probabilistic output of the SVM. Subsequently, the
weighted probabilistic outputs of the SVMs are fused for
the final classification. This algorithm is called P-fusion
the following text.

e Algorithm 3 (object-based semantic approach): After seg-
mentation of an image, image objects are divided into reli-
able and unreliable ones. The reliable objects are classified
using the weighted probabilistic outputs of pixels that con-
stitute the object, while the unreliable ones are identified
based on a series of semantic rules. This algorithm is
written as OBSA in the following text.

The C-voting and P-fusion algorithms can be implemented
at both pixel and object levels, while the OBSA is only at
the object level since the semantic rules are generated based
on objects. The algorithms are tested on three multispectral
data sets with high spatial resolution: the HYDICE DC Mall
data set and the WorldView-2 Hangzhou and Hainan images.
The spatial features chosen for construction of the multifeature
SVM ensemble include the GLCM [41], DMPs [6], [12], and
urban complexity index (UCI) [42], which are described in
Section II. The proposed multifeature SVM ensemble is intro-
duced in Section III. The experimental data sets are described
in Section IV, followed by the experimental results in Section V
and the discussion in Section VI. The last section concludes the

paper.

II. SPECTRAL-SPATIAL MULTIFEATURE EXTRACTION
A. Spectral Feature Extraction

In this paper, PC analysis [18], [43] is used for spectral
feature extraction from multi/hyperspectral images, considering
that it is simple and fast to implement. Furthermore, infor-
mation contained in the multi/hyperspectral images can be
represented by several spectral PCs. Although other spectral
feature extraction techniques can also be employed, such as
non-negative matrix factorization [44], independent component
analysis [45], and decision boundary feature extraction [18],
the discussion about different feature extraction algorithms is
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beyond the scope of this study. In our experiments, four and
three PCs are extracted from the HYDICE and WorldView-2
data sets, respectively, containing over 99% of the information
of the images.

B. Gray-Level Co-Occurrence Matrix (GLCM)

A GLCM is employed in this study considering that it
is a standard technique for texture extraction [41] and has
proved to be effective in enhancing the classification of high-
resolution images [33], [46]. The texture function of GLCM
can be expressed as far.om (b, m, w,d), which contains several
parameters: base image b, window size w, texture measure m,
and direction d. These parameters in this study are defined as
follows.

1) Base image: The texture measures are extracted from the

PCs of the multi/hyperspectral images.

2) Texture measures: Contrast (CON), representing the
gray-level difference between neighboring pixels, is used
in this study. It is one of the most efficient measures
for the discrimination between built-up and non-built-
up areas [47]. Furthermore, multidirectional contrast has
the potential to discriminate between roads and buildings
[33]. Contrast is calculated by

CON =3 > (i—j)* P(ij) (1)

where P(i, j) indicates the joint probability of occurrence
of the pairs of gray levels ¢ and j separated by a given dis-
tance and direction within the moving window. It should
be underlined that other measures, such as homogeneity,
entropy, and dissimilarity, can be also considered for the
GLCM texture extraction. However, in this study, the
measure of contrast obtained the best results, and it was
shown that adding other measures in the texture vector
did not give a better performance than using the contrast
measure individually.

Window sizes: A single window size is not reasonable
because the high-resolution image always shows multi-
scale characteristics. Therefore, in this study, the GLCM
textures are computed using a series of analysis windows
(see Table II).

Directions: Most of the existing studies averaged the
textural measures derived from different directions in
order to obtain a rotation-invariant measure, which was
criticized by Pesaresi et al. [33]. In this paper, different
directions (see Table II) are considered because the di-
rectionality of texture has the potential to discriminate
between isotropic and anisotropic structures.

3)

4)

C. Differential Morphological Profiles (DMPs)

MPs [6], [7] perform a series of morphological openings
and closings with a family of structuring elements (SEs) of
increasing size. The opening and closing are basic morpholog-
ical operators, used to remove small bright (opening) or dark
(closing) details while leaving the overall features relatively
undisturbed. These operators are applied to a gray image with
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TABLE 1I
PARAMETERS OF SPATIAL FEATURES (GLCM, DMP, AND UCI).

Datasets Features

Parameters

No. of Dimension

Base image: b=(PC1, PC2, PC3, PC4); 48

GLCM

Measure: m=Contrast;

Window: w=(3, 7, 11);
Direction: d=(45°, 90°, 135°, 180°).

HYDICE
(DC Mall)

DMP

Base image: b=(PC1, PC2, PC3, PC4), 40
SE: 1=(2,4, 6,8, 10);

Morphological operators: opening and
closing by reconstruction.

UCI

Decomposition level: /=1; 3

Window: w=(4, 8, 16).

Base image: b=(PC1, PC2, PC3); 24

GLCM

Measure: m=Contrast;

Window: w=(5, 9);

WorldView-2

Direction: d=(45°, 90°, 135°, 180°).

(Hangzhou DMP

and Hainan)

Base image: »=(PC1, PC2, PC3); 24
SE: 1=(3,5,7,9);

Morphological operators: opening and
closing by reconstruction.

UCI

Decomposition level: /=1; 3

Window: w=(4, 8, 16).

Spectral
Feature Extraction

Spatial
Feature Extraction

Fig. 1. Flowchart of the vector stacking multifeature fusion.

a series of SE. In addition, morphological operators are usually
implemented using a reconstruction filter because this family of
filters have better shape preservation and introduce less shape
noise than the classical morphological filters [6].

Let v5®(I) and ¢°F(I) be the morphological opening and
closing by reconstruction with SE for an image I. MPs are
defined using a series of SE with increasing sizes

MP., = {MP}(I) =*(I),YA € [0,n]}  (2)

MP,, = {MP)(I) = ¢*(I),VA € [0,n]}
with ~°(1) =¢(I) = I 3)
where A\ represents the radius of the disk-shaped SE. Subse-
quently, DMPs are defined as vectors where the measures of

the slopes of the MPs are stored for every step of an increasing
SE series

DMP,, = {DMP}(I) = [MP}(I) — MP)""(I)|, A € [1,n]}
“)

DMP,; ={DMP} (1) = [MP3(1) — MP}"'(1)|, A € [1,n]}.
4)

In the experiments, DMP., and DMP,, are always concatenated
into a DMP vector in order to represent both bright and dark
features in an image: DMP = {DMP,, DMP,}. The key pa-
rameters of the DMP include the base images and the radius of
the disk-shaped SE. The parameter values for different data sets
are listed in Table II.

PCA

GLCM :> Feature |:>
DMP Selection

UcI

SVM

Classification

D. Urban Complexity Index (UCI)

Most of the existing textural and structural features focus on
the spatial domain alone, but few algorithms refer to feature
extraction from the joint spectral-spatial domains. The recently
developed UCI [42] based on 3-D wavelet transform (3-D-WT)
processes a multi/hyperspectral image as a cube, and it is able
to simultaneously describe the variation information in the joint
spectral-spatial feature space. A 3-D-WT decomposes an image
cube I by a tensor product

I@v2) —(L*  H*) @ (LY @ HY) ® (L* & H?)
L*LYL* & L*LYH* @ L"HYL?
= { GL*HYH? & H*LYL* & H*LYH*  (6)
®H*HYL* & H*HYH*

where @ and ® denote the space direct sum and tensor product,
respectively. L and H represent the low- and high-pass filters
along the z, y, and z axis, respectively. The x and y directions
stand for the spatial coordinates of an image, and z is the spec-
tral axis. One-level 3-D-WT decomposes an image cube into
eight subbands, which can be separated into three categories:

e Approximation: LLL
* Subbands of spectral variation (**H): LLH, LHH, HLH,
HHH

* Subbands of spatial variation (**L): LHL, HLL, HHL
where the ** H components represent spectral variation, since
the high-pass filter is used along the spectral direction, while
the ** L components stand for spatial variation as they represent
high-frequency information in the spatial domain and
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low-frequency information in the spectral domain.
Yoo et al. [42] proposed a UCI based on energy parameters of
3-D wavelet subbands. It was shown that the UCI was able to
discriminate between complex urban and natural classes. The
UCI is defined as the sum of all L components (**L) divided
by the sum of all H components (** H)

E(HLL) 4+ E(LHL) + E(HHL)

VCl= 5(LLH) + E(LHH) + E(HLH)

)

The function E( f) denotes energy of the subband f
E(f) =33 (f@i,5,m))?
% j m

where 4, j, m stand for the coordinates of x, y, z directions in
a subband, respectively. The basic idea of UCI is that natural
features (e.g., water, forest, grass, and soil) have relatively
smaller spatial changes than spectral changes, while urban areas
(e.g., buildings, roads) have more variability in the spatial do-
main than the spectral domain. Consequently, according to (7),
urban structures have larger UCI values than natural structures
since the former contain more spatial variation information. A
previous study showed that the first decomposition level (I = 1
with [ being the number of decomposition levels for wavelets)
gave the highest classification accuracies due to the fact that the
first level contained the majority of the energy of the wavelet
coefficients [42]. Therefore, the parameters of the UCI only
refer to the window size w. In this experiment, three window
sizes are considered: w = (4, 8,16), according to the spatial
resolution and the characteristics of the information classes in
the images.

®)

E. Multifeature Vector Stacking

In spite of the availability of multiple spatial features, it
is difficult to determine which one is optimal for a specific
image scene. Furthermore, a combination of multiple features
may yield better classification performance than their individual
use. Therefore, researchers have proposed to integrate multiple
features for image interpretation. Traditionally, the most widely
used multifeature fusion approach is to concatenate multiple
features into one vector and then interpret the vector via a clas-
sifier, e.g., SVMs. Before introduction of the new multifeature
fusion methods, the traditional VS-SVM algorithm is carried
out in this subsection. Considering that the performance of the
SVM classifier may be sensitive to the dimension of feature
space [31], [35], a SVM-specific feature selection method,
SVM recursive feature elimination (SVM-RFE) [20] is used
for optimization for VS-SVM classification. The SVM-RFE
utilizes the objective function as a feature-ranking criterion to
produce a list of features ordered by discrimination ability. The
flowchart is shown in Fig. 1. Parameters of the three kinds of
spatial features (GLCM, DMP, and UCI) are listed in Table II.

Fig. 2 shows the relationship between accuracies of the
VS-SVM fusion and the dimensionality of the multifeature
space. In this experiment, the highest accuracies among the
five classification results generated by different starting training
samples are used to delineate the curves. In the figure, the dotted

—8—VS-SVM
_______ Dataset=HYDICE DC Mall
DMP
97.00%
96.00%
95.00%
94.00%
<
© 93.00% |
92.00%
91.00%
B
5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Dimensionality of Feature Space
(a)
Dataset=WorldView-2 (Hangzhou)
94.00% p,
92.00%
90.00%
& 83.00%
86.00%
84.00%
82 00% ——"% e e, e e e e
5 1w 15 20 25 30 35 40 45 50 54
Dimensionality of Feature Space
(b)
—8—VS-SVM
"""" DMP Dataset=WorldView-2 (Hainan)
94.00% -
93.00%
& 92.00% ¢
91.00%
90.00%

5 0 15 20 25 30 35 40 45 S50 54
Dimensionality of Feature Space

(©

Fig. 2. Relationship between classification accuracy (overall accuracy) and
the dimensionality of feature space for the VS-SVM multifeature fusion (the
SVM-RFE is used for feature selection).

lines, dashed lines, and dash-dot lines denote the accuracies of
the single-feature classification for DMP, UCI, and GLCM, re-
spectively. By analyzing the figure, we can obtain the following
observations.

1) It is difficult to find a single feature that is optimal for
different image scenes. For instance, although the GLCM
measure gives the highest accuracies for the HYDICE DC
Mall and the WorldView-2 Hangzhou data sets, it yields
the worst performance for the WorldView-2 Hainan
data set.

Compared to the highest accuracy achieved by the single-
feature classification (i.e., the DMP, UCI, or GLCM
feature is individually interpreted by a SVM classifier),
the VS fusion provides slightly higher accuracy in the
HYDICE DC Mall and the WorldView-2 Hangzhou
data sets [Fig. 2(a) and (b)], but lower accuracy in the
WorldView-2 Hainan data set [Fig. 2(c)].

2)
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By observing the trend of the accuracy curves, it is
difficult to adaptively determine the optimal dimension
of the hybrid multifeature space.

Based on the above analysis, it can be stated that although
the VS-SVM is effective in combining multiple features, it
is worthwhile to study other fusion methods in order to take
advantage of different features and improve the classification
results.

III. MULTIFEATURE SVM ENSEMBLE

Before introduction of the proposed multifeature SVM en-
semble algorithms, two concepts about the SVM are defined.

1)

2)

SVM probabilistic output: The output of a SVM can be a
classification map that contains class labels for each pixel
(or object), or a probability map that contains probability
estimates for each pixel (or object) to belong to the
assigned class. In this paper, the one-versus-all approach
[48] is used for the multiclass SVM soft output. The one-
versus-all approach builds K SVMs (K is the number
of information classes), each of which is able to separate
one class from all the others. For each pixel z, the SVM
answers with a decision value dj (x) that indicates the dis-
tance between the pixel x and the separating hyperplane
of class k. py(z), the probability of pixel = belonging
to class k(k=1,...,K), is calculated by transform-
ing the SVM decision value dj(x) based on a sigmoid
function [49]

1
o 1+ exp (Ak . dk(l') + Bk)

pr(x) 9)

where A, and By, are estimated for the SVM of class &
by minimizing the mean square error on the training data
between the original label and the output of the sigmoid
function.

Certainty of SVM classification: The multiclass SVM
probabilistic outputs (p1(z),...,pk(x),...,pr(x), k=
1,2,..., K,) are able to reflect the classification certainty
for each SVM. In this paper, the specificity measure [40]
is used to calculate the certainty of SVM classification

(10)

T =

S@)= 3 [Pr(e) - P ()]
k=1

where p1(x),...,pr(x),...,px(z) represent the multi-
class probabilistic outputs in a descending order. A larger
value of S(z) signifies that the SVM classification for
pixel = is more reliable.

Based on the aforementioned concepts, the proposed three
multifeature fusion algorithms are described as follows.

Algorithm 1: C-voting

Step 1: Single-feature SVM classification. The spectral PCs

concatenated with a kind of spatial feature (e.g.,
GLCM, DMP, or UCI) are fed into a SVM for
classification, resulting in the crisp (class label) and

Step 2:

soft (probabilistic) outputs for each single-feature
SVM.

Pixel-based C-voting. Results of the multiple SVMs
are utilized to determine the reliable (z,) and unre-
liable pixels (2yn). The reliable pixels are defined
as the ones that all the single-feature SVMs give
the same label, and the other pixels are defined as
unreliable. The reliable pixels are classified by

C(z,) = argmaxg—q1,.. xy Va (k)

F
where  V,(k) = > I(Clxy)=k) (11)
f=1

where [ is the indicator function, C(x;) is the class
label of the reliable pixel =, C'(x ) is the class label
of the fth SVM, V, (k) is the number of votes that
pixel z receives for the class k, and F' is the num-
ber of kinds of spatial features, i.e., the number of
SVMs. The unreliable pixels are classified according
to the certainty measure

C’(xun)zC(xf) with f:argmaxf:{l’wF}Sf(m) (12)

Step 3:

where Vi (k) = Z I(C(z)=k)

where C'(zyy) is the class label of the unreliable
pixel z, S (x) is the classification certainty for pixel
x with the feature f, and f is the optimal feature
that has the largest specificity measure among all
the F' SVMs. In (12), the certainty measure is used
to resolve the classification conflict between the
multiple SVM classifiers. In this way, the multiple
spectral-spatial SVMs are fused by minimizing the
classification uncertainty.

Object-based C-voting. In order to take advantage
of the spatial smoothness of segmentation and hence
reduce the salt and pepper effect of the pixel-based
processing, the pixel-based C-voting algorithm is ex-
tended to its object-based version via segmentation-
based majority voting

C(obj) = argmaxy—_1, ..k} Vob; (k)
(13)

xeobj

where C(0bj) is the class label of the object obj, and
Vouj (k) is the number of times class k is detected
within the obj. In this paper, an adaptive mean-
shift procedure [15] is used to generate objects from
an image. Mean shift is an efficient spatial feature
extraction approach that is capable of delineating
arbitrarily shaped clusters due to its nonparametric
nature [50]. The processing flow of the C-voting
algorithm is presented in Fig. 3(a).

Algorithm 2: Probabilistic fusion (P-fusion)

Step 1.
Step 2.

Single-feature SVM classification.
Pixel-based P-fusion. The soft outputs of the mul-
tiple spectral-spatial SVMs are integrated, and the
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final result is determined by the maximum posterior
probability

I
1
C(z) = argmaxy_gq, .. K} ya Z Sy(z) p’}(a:) (14)
F=1

Step 3.

where p?(x) represents the probabilistic value of
pixel x for the class k with the feature f. The
specificity measure is used as the weight of the
probabilistic value in order to reduce the influence
of unreliable information and enhance the relative
weight of reliable information.

Object-based P-fusion. The pixel-based P-fusion is
extended to the object-based result by majority vot-
ing. An adaptive mean shift is also used for the
segmentation. The P-fusion algorithm is shown in
Fig. 3(b).

Algorithm 3: OBSA

Step 1.
Step 2.
Step 3.

Single-feature SVM classification.
Adaptive mean-shift segmentation.
Object-based probabilistic outputs. The probabilistic
outputs for each object O are calculated by averaging

Step 4.

with

: pmax(O) >T,

Processing chains of C-voting (a), P-fusion (b), and OBSA (c) for the multifeature SVM ensemble.

the probabilistic values of all the pixels within the
object

S Y S5(@) ph(e)

zeobj f=1

k —
P(0) = N (15)

where p*(0O) is the probabilistic output of object O
for class k, and N is the number of pixels in the
object.

Reliable and unreliable objects. The objects are di-
vided into reliable (O,) and unreliable (O.,;,) ones,
according to the weighted probabilistic outputs

and  Oyy : Pmax(0) < T,
Pmax(0) = max {p*(0), k={1,...,K}}

where ppax(O) is the maximum probabilistic out-
put for an object O. It can also be viewed as the
probabilistic value of the winning label of the object.
An object is defined as a reliable one when its
probabilistic value of the winning label is larger than
a threshold 7. The threshold is used to control the
proportion of objects on which the semantic rules are
imposed. It should be noted that a blind application
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Fig. 4. Testimage of HYDICE DC Mall: (a) with bands 60, 27, and 17 for red, green, and blue colors, respectively, and the ground truth reference (b).

of the semantic processing to all objects in the
image could decrease the overall accuracy due to
the inaccuracy of the segmentation. An appropriate
range of T is between 0.1 and 0.5. A small value
signifies that a small fraction of the objects are
defined as unreliable and chosen for the semantic
postprocessing. In this paper, T is set to 0.3.
Classification of reliable and unreliable objects. The
reliable objects are classified by the maximum pos-
terior probability

Step 5.

C(0r) = argmaxy—q1,....xy P (Or) (16)
while the unreliable objects are classified by the
following semantic rules:

Rule 1) An unreliable object of roof is reclassified as
aroad or soil when the following conditions are
satisfied:

e O is an unreliable object of roof:
Pmax(0) < T, and C(O) = roof;

* The relative border of the object to road or
soil is larger than T (T = 10%);

* The distance between the object to its near-
est shadow object is larger than zero (roofs
are always adjacent to shadows).

Rule 2) An unreliable object of road or soil is reclas-
sified as a roof when the following conditions
are satisfied:

e O is an unreliable object of road or soil:
Pmax(0) < T, and C(O) = road or soil;

 The relative border of the object to roof is
larger than 7T5;

* The distance between the object to its near-
est shadow object is equal to zero since
roofs are always adjacent to shadows.

Rule 3) An unreliable object of water is assigned to
shadow when the following conditions are met:

e O is an unreliable object of water:
Pmax(0) < T, and C(O) = water;

* The distance between the object to its near-
est shadow object is equal to zero.

TABLE Il
NUMBERS OF THE TRAINING AND TEST SAMPLES (HYDICE DC MALL)
Information No. of No. of
Classes Training Test
Samples  Samples
Roads 100 3,334
Grass 100 3,075
Water 100 2.882
Trails 100 1,034
Trees 100 2,047
Shadow 100 1,093
Roofs 100 5.867
Total 700 19,332

Rule 4) An unreliable object of shadow is assigned
to water when the following conditions are met:
* O is an unreliable object of shadow:
Pmax(0) < T, and C(O) = shadow;
* The distance between the object to its near-
est water object is equal to zero.

The processing chain of the OBSA is presented in Fig. 3(c).
The semantic rules focus on the unreliable objects that cannot
be correctly identified by the feature extraction and classi-
fication techniques. Rules 1 and 2 are used to resolve the
misclassification between roads, roofs, and soil, while rules 3
and 4 are related to water and shadow.

IV. STUDY AREAS AND DATA SETS

The well-known HYDICE airborne hyperspectral data set
from the Washington DC Mall (191 bands with 3.0-m spatial
resolution) is used for evaluation of algorithms, considering
that it is a standard test image for the classification of urban
hyperspectral data. This image contains 1280 scan lines with
307 pixels in each scan line. The test image and its reference are
shown in Fig. 4. The challenges for classifying this image are:
1) discrimination between roads, trails, and roofs, since they are
made of similar materials and have similar spectral properties;
2) discrimination between water and shadow, as they have
very similar spectral reflectance. The training and test samples
(Table IIT) are chosen according to the ground reference pro-
vided in [18]. It should be underlined that the training samples
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Fig. 5.

WorldView-2 test data sets: (a) and (b) are the test image and ground reference of the Hainan data set (rural area), and (c) and (d) are the test image and

ground reference of the Hangzhou data set (dense urban), respectively. The test images are displayed with a composite of red, green, and blue bands.

TABLE IV
NUMBERS OF THE TRAINING AND TEST SAMPLES
(WORLDVIEW-2 DATA SETS)

Datasets WorldView-2 WorldView-2
Hainan Hangzhou

Information No. of No. of No. of No. of
Classes Training Test Training Test

Samples Samples Samples Samples

Roofs 50 11,148 50 23,685
Roads 50 5,100 50 8,800
Soil 50 18.319 50 3,229
Grass 50 7,417 50 3,359
Shadow 50 1,427 50 9,486
Trees 50 14,086 50 1,228
Water 50 11,209 50 7,237
Total 350 68,706 350 57,024

(100 pixels for each class) are randomly selected from the
training sets (300 pixels for each class), and all the experiments
are repeated five times with different starting training sets. In
this way, the mean and standard deviation of the results for the
five runs are reported in the experiments.

The WorldView-2 imagery is of interest as it iS a new-
generation satellite image that is able to provide rich spectral
and spatial information at the same time (8 bands with 2.0-m
spatial resolution). The WorldView-2 images are shown in
Fig. 5, where (a) and (b) are the test image and the ground
truth reference of the Hainan data set (rural area with 520 x
600 pixels), and (c) and (d) are the test and reference im-
ages of the Hangzhou data set (dense urban with 606 x
567 pixels), respectively. The ground truth reference images
are generated by field campaign and visual interpretation of the
study areas. The numbers of training and test samples for the
two WorldView-2 data sets are shown in Table I'V. The training
samples (50 pixels for each class) are randomly selected from
the training sets (300 pixels for each class). All the experiments

are repeated five times with different starting training sets. The
mean and standard deviation of the results are reported for the
assessment of the classification algorithms. The challenge for
the classification of the WorldView-2 data sets is to distinguish
the spectrally similar classes such as soil-roads-roofs, trees-
grass, and water-shadow.

V. RESULTS

The class-specific accuracies of the HYDICE DC Mall,
WordView-2 Hainan, and Hangzhou data sets with different
classification algorithms are presented in Tables V—VII, respec-
tively. The results are reported based on five runs with different
starting training sets, and the mean and standard deviation of
the accuracies are presented in the tables.

The general comments regarding the results are summarized
as follows:

1) Concerning the single-feature classification, the GLCM
obtained the best results for DC Mall (OA = 94.4%) and
WorldView-2 Hangzhou (OA = 92.8%) data sets, while
the UCI gave the best result for the Hainan data set
(OA =92.4%).

For the multifeature classification at the pixel level, the
P-fusion algorithm slightly outperformed the C-voting
in all the three experiments. In addition, the proposed
C-voting and P-fusion algorithms outperformed the tra-
ditional VS-SVM for the two WorldView-2 data sets,
but the VS-SVM gave higher accuracy in the DC Mall
experiment.

At the object level, the OBSA algorithm gave the most
accurate results in all the experiments. Compared to
the object-based C-voting and P-fusion, the accuracy
improvements achieved by the OBSA were 1.5%-5%

2)

3)
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TABLE V
CLASS-SPECIFIC ACCURACIES AND OVERALL ACCURACIES (OA) (%) FOR DIFFERENT CLASSIFICATION ALGORITHMS (HYDICE DC MALL)

Classes | Spectral Single-Feature Multifeature (Pixel Level) Multifeature (Object Level)
DMP | GLCM UCI | VS-SVM| C-voting | P-fusion [ VS-SVM| C-voting | P-fusion | OBSA
Roads 92.7 95.8 91.1 91.8 95.1 91.9 91.9 97.2 90.8 90.8 96.7
£0.1 +0.8 +0.3 +0.3 +04 +0.3 +0.3 +04 £0.1 +0.1 +0.0
Grass 96.7 96.9 98.9 98.1 95.9 98.9 98.9 95.1 98.9 99.0 99.0
+0.2 +0.8 +0.4 +0.2 +0.3 +0.2 +0.1 +1.0 +0.1 +0.1 +0.1
Water 85.5 99.9 96.9 98.1 99.4 99.3 99.2 100.0 100.0 100.0 100.0
+4.0 +0.0 +0.2 +04 +0.1 +0.2 +0.1 +0.0 +0.0 +0.0 +0.0
Trails 49.1 77.8 913 61.9 97.9 76.5 81.7 98.3 81.5 84.6 98.2
+2.5 +14 +2.5 +3.8 +0.4 +6.2 +52 +0.8 +89 +57 +0.5
Trees 97.1 97.6 98.2 97.3 97.1 98.3 98.3 96.3 98.2 98.3 98.2
£0.1 +0.6 +0.1 +0.2 +0.5 +0.1 £0.1 +1.3 +0.2 +0.2 +02
Shadow | 73.8 86.9 91.1 93.3 84.1 97.1 96.9 79.6 96.9 97.0 97.0
+44 +1.7 +0.3 =14 +1.2 +04 £0.1 +0.5 +0.0 +0.0 +0.0
Roofs 75.5 89.9 92.5 833 92.6 89.1 90.9 92.9 90.5 91.7 98.9
+2.8 +0.3 +0.5 +2.0 +0.2 +2.1 +1.5 +0.1 +2.6 +1.5 +0.0
OA 82.7 93.4 94.4 89.7 94.8 933 94.1 94.8 93.9 94.4 98.5
1.7 £0.1 +0.3 +0.9 +0.1 +1.1 +0.8 +0.3 =14 +0.8 +0.0

TABLE VI
CLASS-SPECIFIC ACCURACIES AND OVERALL ACCURACIES (OA) (%) FOR DIFFERENT CLASSIFICATION ALGORITHMS (WORLDVIEW-2 HAINAN)

Classes | Spectral Single-Feature Multifeature (Pixel Level) Multifeature (Object Level)
DMP | GLCM UCI | VS-SVM| C-voting | P-fusion [VS-SVM| C-voting | P-fusion | OBSA
Buildings| 62.0 81.2 81.3 853 87.2 86.3 86.6 87.4 87.3 87.5 92.6
+2.0 +0.6 +1.3 +1.2 +0.8 +0.4 +0.3 +0.8 +1.1 +0.9 +1.2
Roads 71.0 82.9 80.8 81.1 84.6 86.6 87.3 85.4 90.5 90.5 91.8
+0.9 +2.6 +1.2 +1.7 +1.2 +1.6 +1.3 +1.3 +23 +22 +2.1
Grass 95.6 89.9 94.3 96.8 87.5 96.5 96.8 86.5 96.8 97.0 96.7

+1.6 +3.0 +29 +19 +2.8 =1.0 +1.2 +2.9 +1.1 +12 +1.4

Trees 96.7 94.4 95.7 97.5 93.4 97.0 97.1 92.7 96.6 96.7 96.5
+0.8 +0.8 +23 +0.2 +0.7 +0.7 +0.8 +0.7 +0.7 +0.7 +0.8

Soil 853 94.3 93.1 953 96.8 95.0 95.2 97.3 95.2 95.4 98.2
+19 +0.5 +0.7 +0.9 +0.2 +04 +0.4 +0.3 +0.3 +04 +04

Water 99.1 98.9 96.3 95.7 98.9 994 99.1 99.4 99.9 99.9 99.9
+0.0 +1.3 +0.1 +0.8 +0.8 +0.5 +04 +1.1 +0.0 +0.0 +0.0

Shadow | 83.2 753 63.5 63.2 70.1 78.6 76.8 67.1 76.1 76.1 76.2

+1.9 +3.1 +4.2 +2.8 +2.0 +33 +34 +2.4 +4.3 +3.7 +2.4
OA 86.0 91.3 90.5 92.4 92.4 93.9 94.0 92.4 94.4 94.5 96.0
+1.0 +04 +1.2 +0.7 +0.3 +0.3 +0.3 +0.2 +0.5 +0.5 +0.6

TABLE VII
CLASS-SPECIFIC ACCURACIES AND OVERALL ACCURACIES (OA) (%) FOR DIFFERENT CLASSIFICATION ALGORITHMS (WORLDVIEW-2 HANGZHOU)

Classes | Spectral Single-Feature Multifeature (Pixel Level) Multifeature (Object Level)
EMP | GLCM UCI  |VS-SVM| C-voting | P-fusion | VS-SVM| C-voting | P-fusion | OBSA
Buildings| 64.3 82.0 94.1 922 94.6 93.7 93.8 95.7 94.6 94.5 98.4
+7.6 +0.7 +0.3 +0.4 +0.2 +0.3 +0.2 +0.3 +0.2 +0.3 +0.3
Roads 79.3 75.5 85.6 85.9 81.9 85.5 85.9 84.6 89.8 89.5 96.9
+0.7 +0.7 +0.8 +0.5 +0.3 +0.2 +0.2 +04 +0.6 +0.7 +0.8
Grass 89.7 88.9 96.9 94.0 94.0 95.3 95.7 94.4 96.3 96.7 98.9
+1.5 +0.9 +14 +1.9 +0.5 +1.2 +1.3 +0.2 1.7 +19 +0.1
Trees 93.0 923 88.2 85.2 90.2 90.3 90.8 90.1 93.5 94.3 97.3
+0.9 +12 +2.8 +33 +1.5 +1.2 +1.5 +13 +1.1 +14 +1.6
Soil 28.5 50.8 83.6 80.7 84.0 81.1 83.0 88.1 84.7 86.9 97.5
+11.0 | £23 +13 +2.7 +0.3 +1.7 +1.8 +1.2 +3.0 +2.7 +13
Water 91.2 95.8 96.9 95.5 96.2 98.2 98.2 97.7 99.1 99.2 99.4
+0.9 1.7 +0.4 +0.4 +1.3 +0.2 +0.0 +2.1 +0.0 +0.1 +02
Shadow | 91.8 90.5 95.5 96.4 89.9 96.0 96.6 90.6 97.4 97.7 98.2
+0.2 +1.3 +0.4 +0.0 +1.3 +0.1 +0.1 +2.1 +0.1 +0.1 +0.3
OA 72.4 82.5 92.8 91.6 91.3 92.7 93.1 92.7 94.5 94.6 98.2
+4.1 +04 +0.3 +0.3 +0.3 +0.2 +0.1 +0.5 +0.1 +0.1 +04

due to the introduction of semantic rules. It should be VI. DISCUSSION
mentioned that the object-based C-voting and P-fusion
methods increased the accuracies by at most 2.0% com-
pared to their pixel-based versions by courtesy of the In order to evaluate the statistical significance in accuracy for
spatial smoothness of segmentation. the different classification algorithms, including the VS-SVM,

A. McNemar’s Test
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TABLE VIII
MCNEMAR’S TEST FOR THE THREE EXPERIMENTS
(N = NO SIGNIFICANCE, S+ = POSITIVE SIGNIFICANCE,
S— = NEGATIVE SIGNIFICANCE, SF = SINGLE-FEATURE).
THE VS-SVM, C-VOTING, AND P-FUSION ALGORITHMS
ARE IMPLEMENTED AT THE OBJECT LEVEL

P-fusion VS-SVM OBSA Optimal SF
C-voting 12N, 3S— |11S+, IN, 38— 158— 11S+, 1IN, 38—
P-fusion 11S+, 2N, 28— 158— 11S+, 3N, 1S—
VS-SVM 158— 48+, 10N, 1S—
OBSA 158+
Optimal SF

C-voting, P-fusion, and OBSA, McNemar’s test [51] is utilized
in all three experiments. McNemar’s test is based on the stan-
dardized normal test statistic

iz Jfa

Vfi2 + fa1

where f1- indicates the number of samples classified correctly
by classifier 1 and incorrectly by classifier 2. The difference in
accuracy between classifiers 1 and 2 is viewed to be statisti-
cally significant if |Z| > 1.96 using 5% of significance. In our
experiments, the following three cases are defined according to
McNemar’s test:

A7)

1) No significance between classifiers 1 and 2: —1.96 <
7 < 1.96;

2) Positive significance: Z > 1.96;

3) Negative significance: Z < —1.96.

McNemar'’s test is presented in Table VIII, where five runs
with different training samples of the three data sets generate
15 test results for each pair of classifiers. From the test, we can
obtain the following conclusions regarding the proposed three
multifeature SVM algorithms:

1) C-voting versus P-fusion (12N, 3S—): The P-fusion al-
gorithm is slightly better than the C-voting algorithm,
showing that probabilistic fusion is more appropriate for
the integration of multiple spectral-spatial SVMs than
crisp voting.

C-voting versus VS-SVM (11S+, IN, 3S—) and P-fusion
versus VS-SVM (11S+, 2N, 2S—): It is shown that the
proposed C-voting and P-fusion algorithms are more
effective for multifeature fusion than the traditional
VS-SVM. It should be noted that the VS-SVM can also
be viewed as effective for multifeature classification since
it achieved comparable or better results than the optimal
single-feature classification in most of the experiments
(4S+ and 10 N).

OBSA: The object-based semantic approach provided
significantly higher accuracies than the other algorithms.
It is shown that although sophisticated classification tech-
niques (such as multifeature C-voting and P-fusion) are
able to yield satisfactory results for high-resolution im-
age classification, the introduction of semantic rules can
further improve the overall accuracies by 2-4% compared
to other object-based multiple classifier systems, i.e., the
object-based VS-SVM, C-voting, and P-fusion methods.

2)

3)

B. Comparison With the Multikernel SVM

A multikernel SVM classification was also implemented in
this study for comparison. The multikernel learning (MKL)
has been proved to be effective for classification of multi-
source data than the single or simple kernel classifier [21],
[22], [52]. In this paper, the multikernel SVM proposed by
Tuia et al. [22] was used to classify the multiple spectral-spatial
features. Specifically in this experiment, each group of features
corresponds to 4 RBF kernels with a series of bandwidth values
[0.1, 0.25, 0.35, 0.5]. As a result, the composite kernel is
built on 16 kernels for the four kinds of features including
spectral, DMP, GLCM, and UCI. Readers can refer to [22]
for details about the multikernel optimization and classifica-
tion. The results are compared to the C-voting, P-fusion, and
VS-SVM (Table IX). It can be seen that the MKL-SVM gave
higher accuracies than the simple VS-SVM in the WorldView-2
experiments but a slightly lower accuracy in the HYDICE data
set. It is also found that the C-voting and P-fusion achieved
comparable or better results than the MKL-SVM in the three
data sets in terms of accuracies.

C. Evaluation of the Knowledge-Based Rules

In order to evaluate the effectiveness of the knowledge-
based rules, we compare the models with and without rule-
based postprocessing. The model without post-processing steps
uses the maximum probability to classify both reliable and
unreliable objects

C(0) = argmax;_,_ x} p"(0) (18)

where O represents an arbitrary object in an image. The overall
accuracies are compared in Table X.

From the table, it can be seen that rule-based postprocessing
increased the overall accuracies by 3.9%, 3.1%, and 1.3% for
the HYDICE DC Mall, WorldView-2 Hangzhou, and Hainan
data sets, respectively. It is shown that the semantic approach
is appropriate for the interpretation of unreliable objects, and it
can be used as a postprocessing of the multifeature classifica-
tion system.

D. Visual Inspection

For a visual comparison, a series of subset images extracted
from the HYDICE DC Mall data set are shown in Fig. 6.
Comments on the figure are summarized as follows:

1) Spectral classification: Misclassifications between the
spectrally similar classes such as roads, roofs, and trails
are obvious, and the salt and pepper effects can be clearly
observed.

Single-feature classification: UCI and DMP refer to errors
that some buildings are wrongly identified as trails, while
the window size effects can be seen from the GLCM
classification (edges of the water are wrongly classified
as shadow) due to the moving window of the texture
calculation.

VS-SVM (object level): The multifeature stacking ap-
proach is potential to discriminate spectrally similar

2)

3)
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TABLE IX
COMPARISON BETWEEN THE MKL-SVM, VS-SVM, C-VOTING, AND P-FUSION
Methods HYDICE DC Mall WorldView-2 Hangzhou WorldView-2 Hainan
VS-SVM 94.8 0.1 91.3+£03 92.4+03
MKL-SVM 942+0.8 928 E108 93 71E=E 047
C-voting 93.3+1.1 92.7+£0.2 93.9+0.3
P-fusion 94.1+0.8 93.1+0.1 94.0+0.3
TABLE X
ACCURACY COMPARISON BETWEEN THE OBJECT-BASED MULTIFEATURE MODELS WITH AND WITHOUT RULE-BASED POSTPROCESSING
HYDICE DC Mall WorldView-2 Hangzhou WorldView-2 Hainan
Without post-processing 94.6 £ 0.9 95.1+0.3 94.7+0.3
With post-processing 98.5£0.0 982+04 96.0 £ 0.6

C-voting (object level)

P-fusion (object level)

OBSA (object level)

Fig. 6. Subset image classification maps for the HYDICE DC Mall data set (white = roads, orange = roofs, yellow = trails, light green = grass, sea green =
trees, magenta = shadow).

4)

classes that are not well separated by the single feature.
However, the hyperdimensional and hybrid feature space
may result in classification uncertainties. For instance,
the building in the bottom-left corner is wrongly labeled
as grass.

C-voting and P-fusion (object level): The object-based
C-voting and P-fusion algorithms produce similar results.

The performance of the multiple SVMs ensemble is in-
fluenced by the single-feature SVMs. When most of the
SVMs give wrong classifications, the ensemble system
often leads to wrong results. For instance, the building in
the bottom-left corner is incorrectly classified as trails for
C-voting and P-fusion since both DMP and UCI wrongly
identify it as trails.
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JP-ﬁlSiOIl (object level)

OBSA (object level)

Fig. 7.
sea green = trees, black = shadow).
5) OBSA (object level): It can be seen that the misclassifi-
cations between roofs, roads and trails are significantly
reduced due to the consideration of semantic rules.

Classification maps for a subset image of the WorldView-2
Hangzhou data set are compared in Fig. 7. It can be seen that
the OBSA algorithm is able to correctly discriminate between
roads, buildings, and soil, but the other algorithms cannot.
Furthermore, the other algorithms fail to separate water and
shadows, but the misclassifications can be effectively reduced
by the semantic rules.

The classification maps for a subset image of the World
View-2 Hainan data set are shown in Fig. 8. The challenges
for classifying this image lie in the discrimination between soil
and buildings. It can be clearly seen that the other algorithms
do not give satisfactory results except for the OBSA.

VII. CONCLUSION

The objective of this article is to systematically study SVM-
based multifeature ensemble methods for the classification of
high-resolution remotely sensed imagery. The study is inspired
by the fact that in recent years, researchers have developed a
series of spatial and structural features, but it is difficult to find
one feature that is appropriate for different image scenes. In this
context, this study proposes three strategies: C-voting, P-fusion,
and OBSA, implemented at both the pixel and object levels,

Subset image classification maps for the WorldView-2 Hangzhou data set (white = roads, orange = roofs, yellow = soil, light green = grass,

for a combination of spectral, spatial, and semantic features.
The algorithms were evaluated on three multispectral high-
resolution data sets, and their performances were compared
with the VS and MKL algorithms in experiments. The impor-
tant conclusions are summarized as follows.

1) Both P-fusion and C-voting algorithms are effective for
SVM-based multifeature fusion since in most cases they
present significantly better results than the optimal single-
feature classification. Furthermore, it is revealed that the
probabilistic output is more appropriate than the uncer-
tainty analysis for multifeature fusion, as the P-fusion
algorithm outperforms the C-voting algorithm.

The VS-SVM algorithm has the potential to enhance
the discrimination between spectrally similar classes by
forming a hyperdimensional feature space. It gives com-
parable accuracies to the optimal single-feature classi-
fication. However, the proposed C-voting and P-fusion
algorithms produce significantly better results than the
VS-SVM in most of the experiments, as shown in
Table VIII. In addition, it is revealed that the multikernel
SVM is able to improve the results of simple VS-SVM
for the multifeature classification.

Object-based C-voting and P-fusion improve the overall
accuracies by 0.3-2.0% compared to their pixel-based
versions. The accuracy increment can be attributed to the
spatial smoothness of the segmentation.

3)
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Fig. 8.
trees, black = shadow).

4) The basic idea of the OBSA is to use a series of seman-
tic rules for a postprocessing of the multifeature SVM
ensemble. It provides the most accurate results for both
quantitative evaluation and visual inspection. In compar-
ison to the model without postprocessing, the semantic
analysis is able to achieve an accuracy improvement
of 1-4%.

A limitation of the proposed methods is that training samples
are needed for the optimization and learning of the SVMs.
Therefore, in our future work, we plan to discuss the effects of
the size of the training sets on the classification performance. In
addition, an unsupervised version of the proposed multifeature
model deserves studying, particularly for the recognition of a
specific target, e.g., buildings [53].

Another limitation of the proposed methods lies in the
construction of the knowledge-based rules. In this paper, the
semantic analysis is used as a postprocessing of the multi-
feature system. Consequently, several simple rules are defined

Subset image classification maps for the WorldView-2 Hainan data set (white = roads, orange = roofs, yellow = soil, light green = grass, sea green =

for the discrimination between the typical urban classes such
as buildings-roads-soil, and water-shadow. The rules can be
transferred to other image scenes by tuning the threshold pa-
rameters. In addition, the semantic rules are only applied to the
unreliable objects when the ensemble classifier leads to large
classification uncertainty. This is because the effectiveness of
the semantic processing depends on the segmentation quality,
and its blind application to all the objects could decrease the
overall classification results. Therefore, future research should
be related to the construction of the standard semantic rule
library for high-resolution image interpretation.

It should be noted that a recently emerging field for im-
age classification, active learning [54], is highly related to
the proposed multifeature ensemble system. For instance, the
entropy query-by-bagging algorithm [55] is close to C-voting
as they both employ committee-based voting to evaluate the
uncertainty of classification. The breaking ties algorithm [55]
is similar to P-fusion as they both use the SVM-based pos-
terior probability to evaluate the reliability of classification.
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Active learning aims to choose the pixels in the candidate
training pool in order to adapt the classification, while the
methods presented in this study aim to choose the appropriate
single-feature classifiers and reduce the uncertainty of multifea-
ture fusion. Furthermore, although the proposed C-voting and
P-fusion algorithms have proved effective for multifeature fu-
sion, our experiments show that knowledge-based rules are
more crucial for the accurate interpretation of high-resolution
images. In our future research, we plan to introduce active
learning into the multifeature ensemble model.
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