
1030 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 2, FEBRUARY 2014

Sparse Transfer Manifold Embedding for
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Abstract— Target detection is one of the most important
applications in hyperspectral remote sensing image analysis.
However, the state-of-the-art machine-learning-based algorithms
for hyperspectral target detection cannot perform well when the
training samples, especially for the target samples, are limited
in number. This is because the training data and test data
are drawn from different distributions in practice and given a
small-size training set in a high-dimensional space, traditional
learning models without the sparse constraint face the over-
fitting problem. Therefore, in this paper, we introduce a novel
feature extraction algorithm named sparse transfer manifold
embedding (STME), which can effectively and efficiently encode
the discriminative information from limited training data and
the sample distribution information from unlimited test data to
find a low-dimensional feature embedding by a sparse transfor-
mation. Technically speaking, STME is particularly designed for
hyperspectral target detection by introducing sparse and transfer
constraints. As a result of this, it can avoid over-fitting when only
very few training samples are provided. The proposed feature
extraction algorithm was applied to extensive experiments to
detect targets of interest, and STME showed the outstanding
detection performance on most of the hyperspectral datasets.

Index Terms— Dimension reduction (DR), elastic net, hyper-
spectral, target detection, transfer learning.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) processing is concerned
with the analysis and interpretation of spectra acquired

from a given scene, at some distance, by an airborne or
satellite sensor [1]–[3]. The basic task underlying many HSI
processing applications is to identify different materials based
on their reflectance spectra [4]. Target detection is one such
challenge, which aims to separate specific target pixels or
subpixels from background pixels, based on their spectral
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signatures [5]–[9]. When the target spectral signature, which
can be obtained from a standard spectral library (SPL) or from
given training data, is available as prior information, the most
frequently used target detection algorithms are: 1) spectral
angle mapper (SAM) [10], which measures the similarity of
the given target spectra and test pixel spectra by the spectral
angle; 2) adaptive matched filter (AMF) [11], [12], which
is based on the generalized likelihood ratio test, but with
a simplified test statistic; 3) adaptive coherence estimator
(ACE) [13], [14], which estimates the noise covariance struc-
ture using a sample covariance matrix; 4) constrained energy
minimization (CEM) [15], which maximizes the response of
the target spectral signature while suppressing the response
of the unknown background signatures; and 5) orthogonal
subspace projection (OSP)-based detectors [16]–[20], which
achieves the elimination of undesired background signatures
by projecting each pixel’s spectral vector onto a subspace,
which is orthogonal to the undesired signatures. However,
due to the challenging spectral variability phenomenon in
HSI processing, these algorithms are only optimal under some
assumptions and they can only work well in some situations,
e.g., the signal-processing-based AMF algorithms assume that
the target and background covariance matrices are identical,
which is sometimes far from being realistic [21], [22].

In recent years, many machine-learning algorithms have
been demonstrated as being effective for hyperspectral target
detection. For instance, some nonlinear versions of the detec-
tion algorithms have been proposed, inspired by the kernel
method [23], which can implicitly exploit the nonlinear char-
acteristics of data through the use of kernels. These include
kernel-matched subspace detectors [24], [25], kernel OSP [26],
and kernel-based regularized-angle spectral matching [27].
However, only a few researchers have suggested the use of a
machine-learning-based supervised dimension reduction (DR)
approach for target detection, although it has been commonly
adopted in HSI classification [28]–[32]. As we know, the main
objective of HSI classification is to automatically assign all
pixels into land-cover classes, while the main objective of
detection is to search for pixels of a specific target (although
detection can also be viewed as a binary classification); how-
ever, in target detection, the number of pixels in the target class
(positive samples) is often very limited, and the background
class (negative samples) is the union of the different land-cover
classes, which includes almost all the pixels in the image [8].
Therefore, the following two aspects need to be addressed.
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1) Many machine-learning-based supervised DR and classi-
fication algorithms work well only under the assumption
that training and test data are drawn from the same
feature space and the same distribution [33]–[36]. How-
ever, in hyperspectral target detection, the training data,
especially the real-target signatures (positive samples),
are quite limited, so it is impossible to recollect the
required training data to rebuild the learning model when
the test data distribution changes.

2) Most of the existing machine-learning-based supervised
DR algorithms learn a linear projection matrix without a
sparse constraint. Given the limited training data repre-
sented by a large number of spectral features containing
random noise, these existing DR algorithms perform
poorly when dealing with a large test dataset, and they
struggle to interpret the explicit relationship between the
original feature and the reduced feature, and end up with
the over-fitting phenomenon given a small-size training
set [37].

In order to overcome the above two aspects, two types
of constraints should be considered in the current supervised
DR framework, i.e., a data distribution constraint learned by
numerous unlabeled samples, and a sparse constraint imposed
on the linear projection matrix. Therefore, in this paper,
we introduce a novel sparse transfer manifold embedding
(STME) algorithm for HSI DR, which focuses on target
detection. Based on a unified manifold embedding frame-
work, we put forward a discriminative manifold embed-
ding optimization using the supervised information. We then
propose transfer regularization and sparse formulation on
STME to address the two above-mentioned points. The main
advantages of STME for hyperspectral detection lie in the
following.

1) The primary optimization of STME is derived in a
discriminative manifold embedding manner, which can
encode given prior information by utilizing a pair-
wise manifold discriminative analysis to separate target
samples from background ones.

2) A transfer-learning-based constraint is adopted in the
STME model to propagate discriminative information
(given prior information) from training samples to test
samples by preserving the dominant structure of the
distribution in the reduced feature space, so the learned
DR model can be well satisfied with test samples of
various classes.

3) An elastic net constraint, which combines the l1-norm
and l2-norm penalties, is imposed to control the number
of nonzero elements in the linear projection matrix. This
constraint controls the complexity of the DR model,
provides a good interpretation of the learned subspace,
avoids the possible over-fitting phenomenon caused by
limited training data, and makes the learned DR model
robust to random noise in HSI.

The rest of this paper is structured as follows. Section II
provides the proposed STME algorithm in detail, including
the primary discriminative optimization and the two significant
constraints, i.e., transfer regularization and sparse regulariza-

Fig. 1. Flowchart of the STME algorithm for hyperspectral target detection.

tion. The target detection experiments on three challenging
hyperspectral datasets are reported in Section III, followed by
the conclusion in Section IV.

II. STME ALGORITHM

Fig. 1 shows the flowchart of the STME algorithm for hyper-
spectral target detection. The inputs of the STME algorithm
can be divided into three parts.

1) The target spectra, or the labeled target samples, i.e.,
several spectral signature vectors of the target, which are
known as prior information, are represented as si ∈ RL

(i = 1, 2, . . . , N1), where L is the number of spectral
channels provided in HSI and N1 denotes the number
of given target samples.

2) The background spectra, or the labeled background
samples, i.e., some spectral signature vectors of the
background pixels, which can be obtained by the end-
member extraction of HSI and then applying SAM to
exclude the potential target spectra, are represented as
bi ∈ RL (i = 1, 2, . . . , N2), and N2 denotes the number
of background samples.

3) The unlabeled spectra, or the unlabeled samples, i.e., the
numerous spectral signature vectors of unlabeled sam-
ples, which are selected from all the pixels in HSI uni-
formly, are represented as ui ∈ RL (i = 1, 2, . . . , N), in
which N denotes the number of unlabeled samples. The
full input data matrix is denoted by X ∈ RL×M , in which
M = N1 + N2 + N is the number of total input samples.

The STME algorithm is then performed, which learns a
sparse linear projection matrix W ∈ RL×d for DR, based on
the discriminative information explored in the labeled samples
and the dominant structure distribution knowledge provided
by all of the input samples. For an arbitrary test pixel spectral
vector x ∈ RL , we compute the reduced feature representation
in the sparse transfer manifold embedded feature space by

y = W T x (1)
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Finally, the target detection result is obtained by sorting
the nearest neighbors (NN) of the target feature vector in the
sparse transfer manifold embedded feature space.

A. Discriminative Manifold Embedding

The manifold learning method is a nonlinear DR technol-
ogy, which aims to explore the manifold embedded in the
high-dimensional ambient space by preserving a particular
local geometry property; e.g., locally linear embedding pre-
serves the linear coefficients, which are used to reconstruct
a given measurement by its k-NN [38], isometric feature
mapping preserves the global geodesic distances of all the
pairs of measurements [39], Laplacian eigenmaps preserve
proximity relationships by manipulation of an undirected
weighted graph [40], and so on. Based on the two generalized
frameworks published in [41] and [42], different manifold
embedding algorithms, including their linearization, can be
unified to a framework, i.e., a graph embedding framework
and a patch alignment framework, respectively. For a target-
detection-driven DR, in order to maximally separate the target
samples from the background ones, we require the target–
target sample pairs to be as close as possible and the target–
background sample pairs to be as far away as possible in the
learned subspace. The optimization of such an idea can be
derived in a manner similar to that of the patch alignment
framework, but considering the two groups of training samples
differently.

Following the objective of DR, in the low-dimensional fea-
ture space, for each sample of target class si , we expect that the
Euclidean distances between the given sample and the other
samples in the target class to be as small as possible, while
distances between the given sample and the other samples in
the background class are as large as possible

min
W

N1∑

j=1

∥∥∥W T si − W T s j

∥∥∥
2

(2)

max
W

N2∑

j=1

∥∥∥W T si − W T b j

∥∥∥
2
. (3)

We can combine (2) and (3) together by introducing a trade-
off parameter c to control the influence of the two parts

min
W

N1∑

j=1

∥∥∥W T si − W T s j

∥∥∥
2 − c ·

N2∑

j=1

∥∥∥W T si − W T b j

∥∥∥
2
. (4)

Note that for some hyperspectral target detection situations,
only the unique target spectra is available, i.e., N1 = 1 in
(2) and (4). Thus, the optimization (4) reduces to only max-
imize the distances between the given target sample and the
other samples in the background class because the first part in
optimization (4) equals zero. Then, we can simply set c = 1
at this condition.

Based on the patch alignment framework, the local patch of
sample si is defined as

Xi =
[
si , si

1, si
2, . . . , si

N1
, bi

1, bi
2, . . . , bi

N2

]
∈ RL×(N1+N2+1)

(5)

in which si
j ( j = 1, . . . , N1) is the jth sample in the target class

and bi
j ( j = 1, . . . , N2) is the jth sample in the background

class, sorted by the Euclidean distance of the sample pairs
(si , si

j ) and (si , si
j ), respectively. The corresponding low-

dimensional feature matrix of patch Xi is given by

Y i = W T Xi ∈ Rd×(N1+N2+1). (6)

In order to further simplify (4), we define a coefficient
vector as

δ =
⎡

⎣
N1︷ ︸︸ ︷

1, . . . , 1,

N2︷ ︸︸ ︷−c, . . . ,−c

⎤

⎦ . (7)

Then, (4) can be reduced, following the patch optimization
of sample ti

min
W

N1+N2∑

j=1

δ( j )

∥∥∥W T Xi
(1) − W T Xi

( j+1)

∥∥∥
2

= min
W

tr

(
W T Xi

[−eT
N1+N2

IN1+N2

]

×diag (δ)
[−eN1+N2 IN1+N2

]
XiT W

)

= min
W

tr
(

W T Xi Gi XiT W
)

. (8)

In (8), δ( j ) is the jth element in δ( j = 1, . . . , N1 + N2),
Xi

( j ) is the jth column in Xi ( j = 1, . . . , N1 + N2 + 1), and

Gi =
[ −eT

N1 + N2

IN1 + N2

]
diag (δ)

[−eN1 + N2 IN1 + N2

]
(9)

in which eN1 + N2 = [1, . . . , 1]T and IN1 + N2 is an identity
matrix.

The whole optimization of introduced discriminative man-
ifold embedding is obtained by summing all the patch opti-
mizations of the target samples si (i = 1, . . . , N1). However,
we cannot sum the patch optimizations given in (8) directly,
because each patch Xi has its own coordinate system of
the detailed samples by the definition in (5). Here, we use
a selection matrix to align all the samples together into a
consistent coordinate [43]. We assume that the coordinate of
patch Xi is selected from the global coordinate, which is also
the full input data matrix

X =
[

s1, s2, . . . , sN1 , b1, b2, . . . , bN2 , u1,

u2, . . . , uN

]
∈ RL×M . (10)

Then, Xi can be rewritten as

Xi = X Si (11)

in which Si ∈ RM×(N1+N2+1) is defined by

Si
(a,b) =

{
1, if a = �i {b}
0, else

(12)

where �i = [
i, i1, . . . , i(N1+N2)

]
is the index vector for

samples in patch Xi . We then sum the patch optimizations
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of the target samples to obtain the whole optimization of
discriminative manifold embedding

min
W

N1∑

i=1

tr
(

W T X Si Gi SiT X T W
)

= min
W

tr

(
W T X

[
N1∑

i=1

(
Si Gi SiT

)]
X T W

)

= min
W

tr
(

W T XG X T W
)

(13)

in which

G =
N1∑

i=1

(
Si Gi SiT

)
. (14)

B. Transfer Regularization

The optimization of discriminative manifold embedding
learns a subspace which can maximally separate the target
samples from background ones, based only on the prior given
training information; however, it is a fact that only a few
training samples can be obtained in HSI target detection, espe-
cially for the target samples. As a consequence, the dominant
structure distribution will be changed in the learned subspace,
which may be biased toward that spanned by limited training
samples [44]–[46]. Transfer learning is a technology, which
proposes to deal with how to preserve the discriminative infor-
mation from training data to test data that are not in the same
feature space and with different data distributions. In general,
there are three main approaches to transfer learning [33]: 1) re-
weigh some supervised samples in the training domain for
use in the test domain [47]; 2) find a feature representation
that can reduce the difference between the training and test
domains and the error of the classification models [48]; and
3) discover shared priors between the training and test domain
models, which can benefit from transfer learning [49]. In this
paper, we propose to use the dominant structure distribution
provided by a large number of unlabeled samples in HSI
as a regularization to find a subspace that can transfer the
discriminative information from training data to test data and
reduce the error of the subsequent classification.

In STME, to maintain the dominant structure of the distri-
bution after DR, we use the subspace arrived at by principal
component analysis (PCA) [50], based on the full input data
matrix, to restrict the feature space learned by discriminative
manifold embedding, which is only based on the given labeled
data. PCA is a linear transformation used to find principal
components in accordance with the maximum variance of a
data matrix. Thus, the dominant structure of the distribution
can be well preserved in the subspace after such a trans-
formation. Here, we denote the PCA projection matrix by
P ∈ RL×d . The transfer regularization is used to minimize
the Euclidean distance between the full input data matrix in
objective subspace and that in the subspace obtained by PCA

min
W

∥∥∥PT X − W T X
∥∥∥

2
. (15)

Finally, to transfer the discriminative information learned
from the training samples to the test samples, we connect the

optimization of discriminative manifold embedding (13) and
transfer regularization (15) to restrict their latent structure to be
consistent with that in the ambient feature space by introducing
a trade-off parameter β in combination

min
W

tr
(

W T XG X T W
)

+ β
∥∥∥PT X − W T X

∥∥∥
2
. (16)

C. Sparse Formulation

The solution of (16) provides a subspace in which each
basis is a linear combination of all the original features; thus,
it is often difficult to interpret the results [51]. Moreover, W is
a dense matrix in which most elements are nonzero. However,
due to the small sample size (SSS) and the high dimensionality
of the spectral feature, which usually contains random noise
in HSI target detection, it is necessary to control the model
complexity according to the regularization theory [52]. Here,
we introduce a sparse formulation to restrict the number of
nonzero elements in the matrix W . The sparse formulation
imposed subspace has the following advantages.

1) Sparsity provides a good interpretation of the DR model
and, thus, reveals an explicit relationship between the
output feature representation and the given variables.

2) Sparsity can make the output feature simpler and more
succinct, so the subsequent processing becomes more
efficient.

3) Sparsity decreases the variance brought about by possi-
ble over-fitting with the least increment of the bias, so
the learned DR model can generalize better.

For the sparse formulation, we need to control the number
of nonzero elements of the projection matrix W , which can
be characterized by the l0-norm of the matrix W

min
W

F (W ) + ‖W‖0 (17)

in which F (W ) is the optimization of discriminative manifold
embedding and transfer regularization defined in (16), and
l0-norm ‖W‖0 is simply the number of nonzero elements
in W . However, it turns out to be an NP-hard problem
and, thus, the computational complexity of solution searching
is always exponential [53]. Therefore, the l1-norm of the
projection matrix, i.e., least absolution shrinkage and selection
operator (LASSO) [54], is usually adopted as a relaxation of
the l0 formulation

min
W

F (W ) + ‖W‖1 . (18)

Least angle regression (LARS) [55] has been proposed
to greedily search for the optimal solution of the LASSO-
penalized linear regression problem. In the signal-processing
field, although LASSO has shown success in many situations,
in order to produce a sparse representation that selects the
subspace compactly expressing the input feature [56], the
LASSO penalty still has the following disadvantages [57]:
1) the number of selected features is limited by the number
of given samples, because of the nature of the convex opti-
mization problem and 2) the performance of LASSO may not
be optimal if there are high correlations between the input
features. To overcome these drawbacks, the elastic net [57],
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which combines the l1-norm and l2-norm, is introduced. By
introducing the elastic net penalty as a sparse formulation to
impose on (17), we have the full optimization of STME

min
W

tr
(
W T XG X T W

) + β
∥∥PT X − W T X

∥∥2

+ ϕ1 ‖W‖1 + ϕ2 ‖W‖2
2 (19)

in which ϕ1 and ϕ2 are parameters to control the l1-norm
penalty and l2-norm penalty in the sparse formulation.

D. Solution for STME

To find the optimal solution of STME in (19), we first show
that the objective function is of a quadratic form, with the
l1-norm penalty based on some formula derivation (a detailed
discussion of this is given in the Appendix). According to
the analysis in the attached Appendix, the full optimization of
STME can be transformed to

min
W ∗

∥∥G∗ − X∗W∗∥∥2 + ϕ
∥∥W∗∥∥

1 (20)

in which the detailed definition of G∗ ∈ R(M+L)×d , W∗ ∈
RL×d , X∗ ∈ R(M+L)×L , and ϕ ∈ R are given in the Appendix
(A7)–(A10). The optimization problem (20) can be efficiently
solved by the LARS algorithm [55], [57].

Then, based on (A8), the optimal solution of STME is
obtained by

W = W∗
√

1 + ϕ2
. (21)

There are three parameters, β, ϕ1, and ϕ2, in the objective
function of STME (19) and one parameter, c, in the coefficient
vector (7). In this paper, in order to avoid cross-validation,
we set these parameters according to their physical meanings.
β reveals the weight between discriminative manifold embed-
ding and the transfer regularization and, thus, can be decided
by the number of input samples, i.e., we set it to N2

1 /M .
ϕ1 and ϕ2 are the weights of sparse regularization, which
are also decided by the given data. The value of ϕ1/ϕ2, in
particular, is the weight of the grouping effect in the elastic
net penalty, which should be large when the features are
strongly correlated, and vice versa [37]. c is a parameter in
discriminative manifold embedding that is used to control the
minimization of the target class and background class; here,
we set it to N1/N2. When there is only one unique target
spectra available, we could simply set it as c = 1. It should be
noted that without a full parameter cross-validation, we cannot
guarantee the best performance of STME; however, the above-
mentioned parameter setting procedure results in reasonable
performance for target detection applications.

Finally, we provide the computational complexity of the
proposed STME. Based on an analysis of the proposed
procedure, the full input data matrix of STME is denoted
by X ∈ RL×M . In discriminative manifold embedding, the
time complexity of calculating the matrix G is O

(
N1 M2

)
.

In transfer regularization, the time complexity of calculating
the covariance matrix and eigen decomposition is O

(
M3

)
.

In the solution of STME, according to the LARS algorithm,
the time complexity for LARS is O (M L). Taking all the
above parts into account, the total time complexity for STME

is O
(
M L + M3

)
. For the space cost, the maximum size of

the matrices we need to process in the STME algorithm is a
matrix G of size M×M in discriminative manifold embedding,
a covariance matrix of size L × L in transfer regularization,
and a matrix X∗ of size (M + L) × M in the solution of
STME. Therefore, the overall space complexity of STME is
O

(
M2 + M L + L2

)
.

III. EXPERIMENTS AND ANALYSIS

In this section, we first describe the three hyperspectral
datasets used in the target detection experiments. We then
demonstrate the effectiveness of the introduced sparse and
transfer regularizations on the first dataset. Finally, we present
the target detection results obtained from the three hyperspec-
tral datasets, on both implanted targets and real-world targets.

A. Dataset Description

To demonstrate the capability of the proposed STME algo-
rithm for detecting target pixels in a HSI, three different
hyperspectral datasets were used for the target detection.

The first dataset was the target detection self-test dataset
provided by the Rochester Institute of Technology [58], [59],
which includes radiance and scaled reflectance images
acquired by a HyMap airborne hyperspectral sensor at Cook
City in MT, USA, on July 4, 2006. The image covers an
area of 280 × 800 pixels, with 126 spectral channels in the
VNIR–SWIR range. The ground spatial resolution of the
dataset is about 3 m, and the spectral resolution is about
14 nm. The spectral channels around the wavelengths of
1320–1410 and 1800–1980 nm are the water-absorption bands
and have been ignored in this experiment. This dataset is
also equipped with the exact locations and SPL files of all
the desired targets, so it is one of the standard datasets for
hyperspectral detection algorithms.

The second dataset was an airborne his, which was acquired
by the reflective optics system imaging spectrometer (ROSIS)
at the urban test area in Pavia, northern Italy. The spectral
coverage of the ROSIS-03 sensor ranges from 430 to 860 nm,
and 102 spectral channels were analyzed after the removal of
13 noisy bands. The whole data set size is 1400 × 512 pixels,
with a spatial resolution of 1.3 m per pixel. This image scene
contains a number of ground-cover classes, and we aimed
to detect the implanted target pixels with different implant
fractions.

In the last experiment, detection analysis was performed
on an airborne visible/infrared imaging spectrometer (AVIRIS)
dataset from San Diego, CA, USA. The spatial resolution of
image is 3.5 m per pixel. The image has 224 spectral channels
in wavelengths ranging from 370 to 2510 nm, in which the
wavelengths of 1350–1420 and 1810–1940 nm are the water-
absorption bands and have been ignored in the experiment.
This dataset is an urban scene in which there are three planes,
including 58 target pixels as targets to be detected.

B. Effect of the Sparse and Transfer Regularizations

We first used the target detection self-test dataset to analyze
the effect of the sparse and transfer regularizations. In this
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Fig. 2. (a) Hyperspectral dataset 1 (channels 14, 8, and 1 for RGB) and
reference target locations. (b)–(e) Ground truth photos of targets F1, V1, V2,
and V3, respectively.
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Fig. 3. (a) Background classes spectral signatures from HSI. (b) Target
spectral signatures from the supplied SPL.

self-test dataset, there are seven real targets located in the
image, comprising four fabric panels and three vehicles. The
real locations of all the targets are provided by the dataset
project [60]. In the experiment, we first took a fabric panel
as target F1 to show the effect of the sparse and transfer
regularizations in the STME algorithm. We then evaluated the
target detection performance for all three vehicles, V1, V2,
and V3. In order to show the detection results more clearly and
efficiently, we chose a subimage (dataset 1) of size 200 × 400
in the hyperspectral cube, which covers the real locations of
F1, V1, V2, and V3. The locations of the four reference targets
are highlighted in the hyperspectral dataset shown in Fig. 2(a),
and the ground truth photos are shown in Fig. 2(b)–(e).
The main background classes in the HSI are roof, road, soil,
grass, tree and shadow, and the spectral signatures of both the
background classes and targets are shown in Fig. 3(a) and (b).
Note that target V2 actually has two distinctly different spectral
signatures, and we used the white spectral signature for
analysis.

To evaluate the performance of the detection results for
a wide range of specific targets, the target implant method
[61], [62] was used. Here, we first consider target F1 as an
example. All the implanted targets were located at the 20
implanted locations, as well as the real location, as shown
in Fig. 4. A synthetic subpixel target spectra at the specified
fraction f was generated by fractionally implanting the given
target spectra in a located pixel of the background. We gener-
ated three test datasets with implant fractions of f = 0.8, 0.7,
and 0.6, respectively. In each of the test datasets, we implanted

Row 60

200

150

100

50

50 100 150 200 250 300 350 4000

Target Location

Fig. 4. Implanted target locations of F1 in dataset 1.

targets with a fixed implant fraction. Moreover, in order to
consider the effect of random noise in the HSI [63]–[65],
we added additive white Gaussian noise to all the test datasets.
Different variance zero-mean Gaussian noise was added to
each band, with the signal-to-noise ratio (SNR) given in (22)
being randomly selected from 10 to 20 dB. The mean SNR
value was 15 dB.

SNRdB = 10 log10

(
σ 2

signal/σ
2
noise

)
(22)

in which σ 2
signal and σ 2

noise are variances of the signal and noise
components, respectively.

We used the methods of manifold embedding (ME), transfer
ME (TME), and STME for supervised dimensionality reduc-
tion, to verify the effect of the introduced sparse and transfer
regularizations. In these machine learning methods, the prior
target spectra is given as a unique positive sample, so c is set to
1, as mentioned above. We used the vertex component analysis
(VCA) [66] algorithm to extract background endmembers as
negative samples. In the VCA algorithm, we set the number
of endmembers to 15, and compared each of the extracted
endmember spectra to the given target spectra by SAM in order
to guarantee that all the extracted spectra were background
samples. If the SAM value between an endmember spectra
and given target spectra was greater than 0.98, we deleted this
endmember spectra from the negative samples. In the transfer
regularization, the training samples coupled with another 800
unlabeled samples uniformly selected from all the pixels were
used. For the sparse regularization parameter settings, we
set the values to ϕ1 = 0.1 and ϕ2 = 0.03. Based on the
Euclidean distance between the prior target spectral vector
and an arbitrary test spectral vector in the reduced feature
space, the threshold-based test statistic of the reciprocal of the
Euclidean distance was adopted to derive the target detection
result.

Fig. 5(a)–(c) show the detection test statistic transect plots
of row 60 using the three methods on the test datasets with
different implant fractions. As shown in Fig. 4, there are
five implanted targets in this row. From Fig. 5(c), it can be
seen that our proposed method suppressed the background
pixels to a steady range, while the target pixels have a much
higher statistical value, and can be easily separated. However,
as shown in Fig. 5(a) and (b), the methods without sparse
and transfer regularizations output the background pixels with
greater fluctuations, in which some background pixels present
high statistical values that would result in false alarms in
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Fig. 5. Detection test statistic transect plots of row 60. (a) ME. (b) TME. (c) STME.
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Fig. 6. Separability analysis of F1, when (a) f = 0.8, (b) f = 0.7, and (c) f = 0.6.

the subsequent threshold segmentation. These target detection
test statistic results suggest that the introduced sparse and
transfer regularizations can avoid over-fitting when only very
few training samples are provided.

To further investigate the separability between all the target
and background pixels in the reduced feature space, we plotted
the output target detection test statistic results range of the
three methods in the test datasets with different implant
fractions. In each of the subfigures of Fig. 6, there are three
groups of boxes for ME, TME, and STME, respectively. Each
group has a green box representing all the implanted target
pixels, and an orange box representing the range of all the
background pixels in the image. Each box provides the detailed
value distribution of the detection test statistic results, as
shown in the legend. The gap between the green box and the
orange box in each group refers to the separability between
the target and the background pixels in all the datasets. From
Fig. 6, we can see that in different cases of implant fractions,
STME shows the best separability between the target and
background pixels, which reveals that the introduced sparse
and transfer regularizations can preserve the discriminative
information from training data to test data.

In order to investigate the effect of parameter d on the target
detection performance, we made a detailed comparison of the
detection results using ME, TME and STME with increasing
values of d . The detection results were measured by the false

alarm rate (FAR) under 100% detection. Fig. 7 shows the FARs
under the three algorithms with different implant fractions. As
can be seen in Fig. 7, STME performed better than the other
algorithms for all of the d values. We also observed the same
phenomenon in the following three implanted target detection
experiments, i.e., targets V1, V2 and V3.

The above-mentioned analysis, from the target detec-
tion test statistic results, separability analysis, and subspace
dimensionality comparison, proves the significant improve-
ment brought about by the introduced sparse and transfer
regularizations.

C. Target Detection Performance

In this part of the experimental section, we provide the target
detection results for both implanted and real targets in three
hyperspectral datasets. For the implanted target detection, we
first focused on detecting the implanted targets of vehicles
V1, V2, and V3 in the HyMap dataset. We then looked at
the detection of the simulated metal pixels in the ROSIS
dataset. Receiver operating characteristic (ROC) curves [67]
were used to evaluate the final detection performance. After
that, in order to evaluate the performance of the proposed
algorithm in a real-target scene, we have provided the target
detection results of the three vehicles using a full self-test
dataset and its supplied SPL files, the performance of which
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Fig. 7. Relationship of the d-dimensional subspace and FAR of F1, when (a) f = 0.8, (b) f = 0.7, and (c) f = 0.6.
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Fig. 8. ROC curves of V1, when (a) f = 0.7, (b) f = 0.6, (c) f = 0.5, and (d) f = 0.4.

is measured by the FARs when desired targets are present.
For the AVIRIS dataset, we aimed to detect the pixels of
the aircraft in the real HSI. In both the implanted target and
real-world target experiments, the following algorithms were
employed for comparison: 1) ACE; 2) AMF; 3) CEM; 4) local
ACE (L-ACE); 5) local AMF (L-AMF), which employs a
local image to estimate background covariance in the ACE
and AMF algorithms; 6) OSP; 7) SAM; and 8) the proposed
STME. In all the detectors, we used the same given target
spectra as the input a priori target spectra. In L-ACE and
L-AMF, we adopted the double concentric window [9], in
which the size of the small inner window was set according
to the desired target size: for single (sub) pixel detection,
the inner window was set to 3. The larger outer window
was set from 15 to 25 to report the best performance. In
OSP, we used the HySime algorithm [68] to estimate the
background subspace, and the VCA algorithm to extract
the background endmembers. Again, SAM was applied to
check if target spectra were included within the background
endmembers.

1) Experiments With Implanted Targets in the HyMap
Dataset: Here, we report on the detection results of the
implanted targets of vehicles V1, V2, and V3 in dataset 1.
For each target vehicle, we implanted 21 targets based on
target spectra, with implant fractions of f = 0.7, 0.6, 0.5, and
0.4. The implanted locations included 20 implanted locations
that were exactly the same as those shown in Fig. 4, and
the real-target locations, as given in Fig. 2. Moreover, we
also added the same level of random noise as in the test
datasets.

Fig. 8 gives the ROC curves of the detection results,
with different implant fractions, for target V1 using the
above-mentioned algorithms. In this paper, we obtained the
ROC curves by computing the detection probability versus
FAR. The algorithm with the best performance is indicated
by a curve nearest to the upper left, which indicates the
highest detection probability under the same FARs. The ROC
curves of STME demonstrate a superior performance when
compared to the other hyperspectral detection algorithms.
The main reasons for this superior performance in detection
are: 1) because of the essential attribute of discriminative
ME, the proposed algorithm learns a subspace in which the
target group and background group can be separated by the
maximum possible amount, and 2) the introduced sparse
and transfer regularizations help to obtain a more general
and powerful DR model for the test samples. This is the
key point in machine-learning-based hyperspectral detection
with SSS and high-dimensional features. The experimental
results also suggest that the proposed algorithm is effective
for subpixel target detection. Generally, ACE and AMF
always give a satisfactory performance in subpixel detection
because both of the detectors are designed to detect the target
spectral signature in the subspace, based on a linear mixing
model [8]. The local versions of ACE and AMF, in particular,
can follow the spatial variability of the background statistics
in the scene to achieve a better detection performance. In this
experiment, the proposed algorithm showed a clear advantage
when compared with these other methods. The ROC curves
in Fig. 8(a)–(d) reveal that the proposed STME algorithm
outperforms the conventional hyperspectral detection methods
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Fig. 9. ROC curves of V2, when (a) f = 0.7, (b) f = 0.6, (c) f = 0.5, and (d) f = 0.4.

1E-5 1E-4 1E-3 1E-2 1E-1 1E0
0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

False Alarm Rate

1E-5 1E-4 1E-3 1E-2 1E-1 1E0
0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

False Alarm Rate

1E-5 1E-4 1E-3 1E-2 1E-1 1E0
0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

False Alarm Rate

1E-5 1E-4 1E-3 1E-2 1E-1 1E0
0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n 
R

at
e

False Alarm Rate

ACE AMF CEM L-ACE L-AMF OSP SAM STME

(a) (b) (c) (d)

Fig. 10. ROC curves of V3, when (a) f = 0.7, (b) f = 0.6, (c) f = 0.5, and (d) f = 0.4.
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Fig. 11. Implanted target locations in the ROSIS dataset.

effectively and stably in the challenge of different implant
fractions. We also evaluated the detection performance of
targets V2 and V3, and the corresponding ROC curves are
recorded in Figs. 9 and 10. The detection results are similar to
the above analysis of V1, and the proposed STME algorithm
shows the best performance in the ROC curves of all the
subfigures of the different implant fractions.

2) Experiments With Implanted Targets in the ROSIS
Dataset: Here, we provide the detection results for the ROSIS
dataset, which has a larger image size and more complicated
background land-cover classes, as shown in Figs. 11 and 12.

The target of interest was a metal spectra acquired from the
Johns Hopkins University (JHU) spectral library (see also the
data in the ENVI spectral library: JHU library, Copper Metal
0692UUUCOP). For target implantation, we rescaled the target
spectra to the image range and resampled it according to the
HSI wavelength. We then implanted 30 simulated pixels with
different fractions from f = 0.8 to f = 0.4, the reference
locations of which are given in Fig. 11. As regards the
parameter setting, we used the same parameter combination
as in the HyMap dataset. The detection ROC curves of all
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Fig. 12. (a) Target spectral signatures and background classes spectral
signatures in the ROSIS dataset. (b) ROC curves of the detection results.

the algorithms in Fig. 12(b) indicate that the proposed STME
shows an excellent and robust detection performance.

3) Experiments With Real Targets in the Self-Test Dataset:
The real-target detection performances of all the algorithms
were evaluated using the full self-test dataset, with the same
parameter setting strategy as before. In this experiment, the



ZHANG et al.: STME FOR HYPERSPECTRAL TARGET DETECTION 1039

TABLE I

FARS OF ALL THE ALGORITHMS WITH THE SELF-TEST DATASET

V1 V2 V3 Time (s)

ACE 2.57 × 10−2 2.46 × 10−2 2.47 × 10−1 5.78

AMF 2.79 × 10−2 8.00 × 10−2 1.83 × 10−1 2.71

CEM 2.14 × 10−2 1.50 × 10−2 1.99 × 10−1 16.19

L-ACE 1.18 × 10−2 1.23 × 10−2 6.51 × 10−2 2301.33

L-AMF 3.62 × 10−2 6.87 × 10−2 2.45 × 10−1 2815.59

OSP 4.75 × 10−2 1.02 × 10−1 1.06 × 10−1 4.48

SAM 3.65 × 10−2 1.01 × 10−2 9.45 × 10−2 4.42

STME 5.03 × 10−3 7.86 × 10−3 4.85 × 10−2 7.51

Target Location

(a) (b)

Fig. 13. (a) RGB composites of the AVIRIS dataset (channels 55, 33, and
19 for RGB). (b) Target locations in the AVIRIS dataset.
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Fig. 14. (a) Target spectral signatures. (b) Background classes spectral
signatures in the AVIRIS dataset.

project-supplied SPL files of V1, V2, and V3 were used as the
prior target spectra, while the ground truth provided with the
self-test dataset was used to compute the target detection FAR,
which is defined as the number of pixels having a test statistic
value equal to or greater than the highest target pixel value
divided by the total number of pixels in HSI.

The detailed detection performances are given in Table I,
where we also show the average processing times for all the
algorithms. It is evident from this table that the proposed
STME algorithm gave the outstanding performance with all
three vehicles in the real-target detection test. It can also be
seen that the computational complexity of the STME algorithm
is a little higher than ACE and AMF, but is much lower than
the local versions of these detectors.

4) Experiment With the AVIRIS Dataset: Fig. 13(a) shows
the RGB composites of the AVIRIS dataset which we
adopted for the real-world target detection experiment. The
detailed target locations are provided in Fig. 13(b). In
this experiment, we used the mean value of the tar-
get pixels’ spectra in the HSI as the prior target spec-
tra for detection. Spectral signatures of both background
classes and targets are shown in Fig. 14(a) and (b).
This dataset is challenging for target detection because of the

Target Absent

Target Present

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 15. 2-D plots of the detection test statistic results for the AVIRIS dataset.
(a) ACE. (b) AMF. (c) CEM. (d) L-ACE. (e) L-AMF. (f) OSP. (g) SAM.
(h) STME.

high spectral variability of the target and background classes,
as shown in Fig. 14(a) and (b). There is no single spectral
curve response representative of roof, and some pixels of roof
are spectrally similar to the target pixels, so these roof pixels
have a high probability of being misclassified as false alarms.
For STME, we also selected 15 background endmembers
from HSI as the negative samples, and another 400 unlabeled
samples were used for transfer regularization. The detailed
parameter settings were the same as we used in the HyMap
dataset experiment. For all the detectors, for comparison, we
used the same parameter settings as above. Note that the size
of the typical target in this dataset is about 5 × 5 pixels; thus,
in the L-ACE and L-AMF algorithms, the local background
statistics estimation was obtained by setting the size of the
small inner window to 11. Again, the larger outer window
was set from 21 to 31 to report the best performance.

The 2-D plots of the detection test statistic results of
all the comparison algorithms are shown in Fig. 15(a)–(h).
From these figures, we can see that the proposed STME
provided a distinguishable statistic map for further threshold
segmentation. It could be seen that the other comparison
algorithms also output high statistical values for the target
pixels, but a few of roof pixels in the image also output high
values, which would cause false alarms.

Based on the output statistic maps in Fig. 15(a)–(h), the
ROC curves and the FARs under 100% detection for all
the comparison algorithms are shown in Fig. 16(a) and
(b). Furthermore, Fig. 17(a)–(h) show the 95% confidence
regions [67] drawn around each estimated ROC curve using
NT = 58. It can be observed from Figs. 16 and 17 that the
STME superiority in AVIRIS experiment is less significant
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Fig. 17. Confidence intervals around ROC curves. (a) ACE, AMF, and CEM. (b) L-ACE, L-AMF, and OSP. (c) SAM and STME.
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Fig. 16. (a) ROC curves, and (b) false alarm rate under 100% detection of
the AVIRIS dataset.

than the implanted experiments. Just as discussed in a famous
hyperspectral target detection paper [69], we can never eval-
uate that if a detection algorithm is always superiority with
respect to other algorithms. Nevertheless, the proposed STME
algorithm has showed the effective performance on all of
the tested hyperspectral datasets.

IV. CONCLUSION

In this paper, the STME algorithm was presented as an
effective and efficient feature extraction method for hyper-
spectral target detection. This algorithm utilized discriminative
manifold embedding to learn a subspace, which can maximally
separate the target samples from the background ones, based
on the prior supervised information. In order to transfer
the discriminative information from limited training samples
to unlimited test data, we introduced transfer regularization
into the optimization by preserving the dominant structure

distribution of the samples. Meanwhile, by imposing an elastic
net penalty on the DR projection matrix, the learned sparse
representation of the transfer ME model can avoid the possible
over-fitting in SSS learning.

Experiments on hyperspectral detection with three well-
known datasets confirmed the performance of our algorithm.
In comparison with the results of ME and TME, the proposed
STME proved the significant improvement brought about by
sparse and transfer regularizations. This can be seen in the
detection test statistic results, separability analysis, and sub-
space dimensionality comparison. Moreover, the ROC curves
and FAR reports also validate the performance of STME in
both implanted and real-world hyperspectral target detection.
Although the proposed approach works well, it does have
some points that need to be addressed. Similarly to most
machine learning methods, it is difficult to provide some
criteria for estimating the various parameters, which weakens
the robustness of the STME. Thus, in the future, we will focus
on determining the optimal trade-off parameters automatically,
which makes the proposed procedure applicable in practice
conveniently.

APPENDIX

The full optimization of STME can be rewritten as

min
W

tr
(

W T XG X T W
)

+βtr

[ (
PT X − W T X

)
·
(

PT X − W T X
)T

]

+ϕ1 ‖W‖1 + ϕ2 ‖W‖2
2

= min
W

tr

[
W T X (G + β · I ) X T W − β PT X X T W

−βW T X
(

PT X
)T

]
+ ϕ1 ‖W‖1 + ϕ2 ‖W‖2

2 .

(A1)

Here, we use � for simplicity

� = (G + β · I ) /β. (A2)

Then, (A1) is reduced to

min
W

tr

[
βW T X�X T W − β PT X X T W

−βW T X
(
PT X

)T
]

+ ϕ1 ‖W‖1 + ϕ2 ‖W‖2
2 . (A3)
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We consider that � is symmetric, so we have

� = V DV T (A4)

in which V and D are the eigenvector and eigenvalue matrices
of �, respectively. Then, the first part of (A3) can be rewritten
as

βtr

[
W T X

(
V DV T

)
X T W

−PT X X T W − W T X
(
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)T

]

= βtr
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(
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) (
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The second part in (A5) is a constant item and can be
ignored for the optimization. Then, we can further rewrite (A3)
as

min
W

β

∥∥∥∥
(

V D1/2
)−1 (

PT X
)T −

(
D1/2V T

)
X T W
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2

+ϕ1 ‖W‖1 + ϕ2 ‖W‖2
2

= min
W ∗

∥∥G∗ − X∗W∗∥∥2 + ϕ
∥∥W∗∥∥

1 (A6)

in which

G∗ =
[

β1/2
(
V D1/2

)−1 (
PT X

)T

0L×d

]
(A7)

W∗ = √
1 + ϕ2 · W (A8)

X∗ = β1/2

√
1 + ϕ2

·
[ (

D1/2V T
)

X T
√

ϕ2 · I L×L

]
(A9)

ϕ = ϕ1

1 + ϕ2
. (A10)
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