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Multiple Morphological Profiles
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Abstract—Morphological profiles (MPs) are a useful tool for re-
motely sensed image classification. These profiles are constructed
on a base image that can be a single band of a multicomponent
remote sensing image. Principal component analysis (PCA) has
been used to provide other base images to construct MPs in
high-dimensional remote sensing scenes such as hyperspectral
images [e.g., by deriving the first principal components (PCs)
and building the MPs on the first few components]. In this paper,
we discuss several strategies for producing the base images for
MPs, and further categorize the considered methods into four
classes: 1) linear, 2) nonlinear, 3) manifold learning-based, and 4)
multilinear transformation-based. It is found that the multilinear
PCA (MPCA) is a powerful approach for base image extraction.
That is because it is a tensor-based feature representation
approach, which is able to simultaneously exploit the spectral-
spatial correlation between neighboring pixels. We also show
that independent component analysis (ICA) is more effective for
constructing base images than PCA. Another important contri-
bution of this paper is a new concept of multiple MPs (MMPs),
aimed at synthesizing the spectral-spatial information extracted
from the multicomponent base images, and further enhancing
the classification accuracy of MPs. Moreover, we propose two
different strategies to interpret the newly proposed MMPs by
considering their hyperdimensional feature space: 1) decision
fusion and 2) sparse classifier based on multinomial logistic
regression (MLR). Experiments conducted on three well-known
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hyperspectral datasets are used to quantitatively assess the
accuracy of different algorithms.

Index Terms—Feature extraction (FE), hyperspectral imaging,
morphological profiles (MPs), spectral-spatial classification.

I. INTRODUCTION

HE ADVENT of hyperspectral imagery, recording hun-

dreds of spectral channels, has opened up new avenues
for image analysis and information extraction, which pro-
vides additional capacities for remote sensing applications
in many different areas, such as precision agriculture, ur-
ban mapping, environment management, military applications.
Recently, hyperspectral data with high-spatial resolution have
become available, which provides very wealthy information
in both the spectral and spatial domains at the same time
[1]. Consequently, for an accurate interpretation of this kind
of imagery, it is indispensable to simultaneously exploit the
radiometric information in the spectral domain and the struc-
tural information in the spatial domain. In this regard, joint
spectral—spatial classification has received much interest, and
a number of research papers have been published on this topic.
Among these, several representative methods rely upon the use
of MPs, which were originally proposed in [2] for high-spatial-
resolution image classification, and subsequently, generalized
as extended morphological profiles (EMPs) for hyperspectral
data by constructing the MPs on the first PCs [3] (refer to
Table I for all the acronyms that are used throughout the
paper). MPs extract multiscale structural features by locally
processing an image via a series of structural elements (SEs)
with different sizes and hence exploit spatial information for
improving the traditional pixelwise image spectral classifica-
tion [4], [5]. Considering that the EMPs do not adequately
take advantage of the spectral information for hyperspectral
image classification, Fauvel et al. [6] proposed to further inject
the spectral features extracted from the original hyperspectral
bands into the MPs, forming a spectral-spatial hybrid feature
space. A new development of the MPs is given by attributes
profiles (APs), proposed by Dalla Mura et al. [7]. Unlike
the traditional MPs performed on SEs with different sizes,
APs aim to generate morphological profiles (MPs) by filtering
the connected components of an image with different criteria.
Similarly, APs were generalized to EAPs when applied to
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TABLE I
LIST OF ACRONYMS

MMPs Multiple morphological profiles
MPs Morphological profiles
EMPs Extended morphological profiles
PCA Principal component analysis
ICA Independent component analysis
MLR Multinomial logistic regression
PCs Principal components
ICs Independent components
SEs Structural elements
APs Attributes profiles
EAPs Extended attributes profiles
KPCA Kernel PCA
NMF Nonnegative matrix factorization
CNMF Constrained nonnegative matrix factorization
FA Factor analysis
KNMF Kernel nonnegative matrix factorization
LPP Locality-preserving projections
NPE Neighborhood-preserving embeding
MPCA Multilinear PCA
JADE Joint approximation diagonalization of eigenmatrices
LORSAL Logistic regression via variablle splitting and
augmented lagrangian
SVM Support vector machine
ROSIS Reflective optics systems imaging spectrometer
HYDICE Hyperspectral digital imagery collection experiment

TABLE II
REVIEW OF THE CURRENT BASE IMAGES USED FOR
MORPHOLOGICAL PROFILES

Profiles
EMPs

References

[3], [6], [10], [11]

Base images
PCA

ICA [13]
KPCA [12]
PCA [8]
JADE-ICA [15]
KPCA [16]

EAPs

hyperspectral images by computing the APs based on the first
PCs [8]. Other variants concerning MPs and APs involve direc-
tional morphological profiles [9] or multifeature fusion [10].
Both EMPs and EAPs exhibit good performance when used
for spectral-spatial classification of hyperspectral imagery
[53]. It should be noticed that a key issue for the extension of
the morphological profiles is to determine a set of base images,
on which the EMPs or EAPs are built. We define the base im-
ages as one or several feature images, extracted from the orig-
inal hyperspectral data, for the subsequent spatial/structural
feature extraction and spectral-spatial classification. Most of
the base images considered in the existing literature are the
first or first few PCs. However, additional strategies used for
EMPs and EAPs can be summarized as follows (see Table II).
1) In the case of EMPs, the classification results of the
EMPs built on the KPCA outperformed those obtained
with the EMPs with the PCA, because the KPCA
extracts more useful features for classification [12]. The
limitation of the KPCA, however, is its computational
cost, caused by the kernel-based feature representation
[12]. In addition, more base images are needed for
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TABLE III
BASE IMAGES CONSTRUCTION METHODS CONSIDERED IN THIS STUDY
FOR GENERATING THE MORPHOLOGICAL PROFILES

Category Method

Linear PCA, JADE-ICA, Fast-ICA,
CNMF, FA

Nonlinear KPCA, KNMF

Manifold LPP, NPE

Multilinear MPCA

The methods used to construct base images for the first time
in the literature are underlined.

KPCA to achieve a satisfactory result, which always
leads to a more significant computational burden. With
respect to ICA, it has been shown that it led to equivalent
results to the PCA in terms of classification accuracy
[13], [14].

2) In the case of EAPs, it has been proved that ICA is more
suitable than PCA for constructing thebase images for
the EAPs [15].

In this paper, we focus on unsupervised methods, which are
data-driven, self-adaptive, and automatic, for generating base
images of MPs. A detailed comparison between unsupervised
and supervised methods is conducted in Section V-E.

Based on the aforementioned analysis, we conclude that, al-
though a few studies exist, most of the base image construction
methods are related to traditional feature extraction (FE) tech-
niques. A systematic investigation and a general conclusion
are lacking, especially, for EAPs. As a result, an important
objective of this work is to conduct a systematic study on the
base images used for the morphological profiles (both EMPs
and EAPs), and extend the current framework by proposing a
series of new methods, e.g., multilinear transformation [17],
and manifold learning [18]-based. As shown in Table III, the
base images considered in this study include the following
four categories.

1) Linear transformations: In this category, base images
are extracted from the hyperspectral imagery via linear
transformations. To our knowledge, the Fast-ICA [19],
CNMF [20], and the FA [21] are used to construct base
images of MPs for the first time in this work.

2) Nonlinear transformation: Since hyperspectral data ex-
hibit intrinsic nonlinear properties [22], nonlinear trans-
formations can also be appropriate for the construction
of base images. In this paper, two representative kernel-
based transformations, KPCA [12] and KNMF [23], are
employed.

3) Manifold learning: This strategy aims to seek a manifold
coordinate system that preserves geodesic distances in
high-dimensional data space [24]. The manifold coordi-
nate representation is able to exploit the nonlinear struc-
ture of hyperspectral imagery and hence discriminate
between spectrally similar classes [24]. Therefore, man-
ifold learning is also a suitable strategy for producing
base images for MPs. Based on this observation, we pro-
pose to adopt two manifold transformation algorithms
for base image extraction in this work, LPP [25] and
NPE [26].
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4) Multilinear transformation: Hyperspectral data can be
naturally represented as a 3-order tensor with the joint
spatial-spectral dimensions. However, traditional FE
methods process the whole image in a vector-based
manner, which does not exploit the spatial correlation
between neighboring pixels and hence ignore the dis-
criminative information in the image local structure. In
this context, we propose in this work to use multilinear
transformation (e.g., multilinear PCA [27]) for creating
the base images of hyperspectral imagery.

It should be noted that traditional EMPs or EAPs are built
on a single kind of base images. However, the morphological
features derived from various base images can complement
each other and contribute to the final classification based on the
multiple profiles. Consequently, another contribution of this
work is the introduction of MMPs, which integrate the MPs
(EMPs or EAPs) extracted from multiple base images. Specifi-
cally, two new strategies are introduced in this work for taking
advantage of MMPs for hyperspectral image classification.

1) Stacked MMPs: A natural way to integrate the dis-
criminative information from the MMPs is to classify
the stacked profiles derived from multiple base images.
However, this strategy poses a great challenge to the
classifier, since the concatenation of MMPs necessarily
leads to a hyperdimensional feature space and a huge
computational burden needs to be employed for the clas-
sification process. In this work, we propose to use SVMs
[28] for interpreting the MMPs, along with LORSAL
algorithm [29], which is a recently developed classifier
with low computational complexity.

2) Decision fusion of MMPs: Another strategy for informa-
tion mining from the MMPs is decision fusion, where
a series of subclassifiers are used for each category of
profiles.Then, the information from the outputs of the
subclassifiers is further integrated for the final decision.
The decision fusion is able to reduce the computational
burden for the classification of MMPs [10].

In order to provide an experimental validation of the newly
introduced approaches, we have conducted an evaluation of
three well-known public hyperspectral datasets with high-
spatial resolution: ROSIS, Pavia University and Centre, and
HYDICE DC Mall. The remainder of this paper is organized
as follows. Section II briefly introduces the morphological
profiles (EMPs and EAPs), followed by the FE algorithms
used for the extraction of base images in Section III. The new
techniques developed for information fusion and classification
based on the proposed MMPs are described in Section IV.
Experimental results and analysis are presented in Section V,
and Section VI concludes this study with some remarks and
hints at plausible future research.

II. MORPHOLOGICAL PROFILES
A. Extended MPs

Mathematical morphology is based on two fundamental
operators: erosion and dilation [30]. Morphological opening
aims to dilate an eroded image to filter out bright structures,
while morphological closing aims to erode a dilated image
to suppress dark structures. It is generally desirable that a
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reconstruction filter is implemented on these basic morpholog-
ical operators in order to preserve original image structures and
suppress shape noise [31]. The opening and closing operators
have been proven to be both effective in analyzing spatial
interpixel dependence and dealing with the spatial information
for classification of high-spatial-resolution images [9], [32].

Let v9F(I) and ¢°F(I) be the morphological opening and
closing with a SE [30] for an image /. MPs are defined by a
series of SEs with increasing sizes

MP., = {MP}(I) =y*(I), VA€ [0,n]}
MP,, = {MP}(I) = ¢*(I), VA€ [0,n]}

with 7%(I) = ¢°(1) = 1 (1)

where A represents the radius of a disk-shaped SE which is
commonly used in the literature [3], [11], [33]. MPs based on
opening/closing by reconstruction are generated from a gray
level image using a set of SEs with gradually increasing sizes,
representing the multiscale information of the image. However,
as previously stated, when dealing with hyperspectral images,
it is impractical to directly calculate the MPs for each spectral
band, since it would lead to a hyperdimensional feature space
showing a large amount of information redundancy.

In this context, EMPs [3] have been proposed for mor-
phological FE from hyperspectral imagery. EMPs contain a
series of MPs built on the so-called base images, which
contain a few bands but represent most of the information
which is relevant for discrimination purposes in the original
hyperspectral image. EMPs can be written as

EMP = {MP(f(1)), MP(f(2)),...,MP(f(n))}  (2)

where f comprises a set of the n-dimensional base images.

B. Extended Morphological Attribute Profiles

Morphological attribute filters represent an adaptive mor-
phological analysis technique which implements a series of
attribute thickening and thinning operators on connected com-
ponents, according to various criteria [34]. For each connected
component, if the criterion is verified then the connected com-
ponent is kept unaffected. Otherwise, the connected compo-
nent might be removed (the removal is subject to the filtering
rule employed when nonincreasing attributes are considered).
APs can be expressed within the framework of MPs defined
in (1), by replacing the opening and closing operators by a
series of morphological attributes. Let us denote by 77> (1)
and ¢ (I), the attribute thinning and thickening operators,
respectively. With a criterion T}, the APs can be written as

AP, = {AP]X(I) =42 (I) VA€ [0,n]}
APy = {APMI) = ¢™ (1) VA€ [0,n]}

with 470 (I) = ¢™0(I) = I. 3)

The morphological attributes considered in this paper in-
volve the area of the regions, the length of the diagonal of the
bounding box, the first moment of inertia, and the standard
deviation [7]. In this way, based on the various attributes and
the multilevel criteria considered, an image can be represented
by a set of multilevel spatial and spectral features. As it was
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already the case with EMPs, when processing hyperspectral
imagery, the EAPs are generated from a series of base images
as follows:

EAP = {AP(f(1)), AP(f(2)),...,AP(f(n))}. 4

III. EXTRACTION OF BASE IMAGES

In this section, we analyze several FE methods used to
generate the base images from the hyperspectral data. The
considered methods are split into four categories, i.e., linear
transformations, nonlinear transformations, manifold learning,
and multilinear transformations.

A. Linear Transformations

The linear model can be defined as a linear subspace of the
original hyperspectral bands

Yy =0TX Q)

where X is the input data, Y is the output data, and ® is
a transformation matrix [33]. The transformation matrix ®
is calculated by optimizing a specific objective function. In
this study, several representative linear models are considered,
including PCA, ICA, NMF, and FA. In the following, we
briefly outline these methods.

1) Principal Component Analysis: Principal component
analysis (PCA) generates base images by analyzing the co-
variance matrix of the original hyperspectral images. The PCA
transformation for a hyperspectral image is achieved by

Ypca = VI(X —m) (6)

where the transformed component Ypca is obtained by pro-
jecting the original feature space into a subspace which con-
tains a majority of the cumulative covariance by analyzing the
mean (m) and the eigenvector (V') of the hyperspectral data.
PCA has been shown not to be optimal for the classification
[35]. However, from the FE point of view, PCA is able to
represent the original hyperspectral data using only a few
principal components. Therefore, it is still the most widely
used method for generating the base images for MPs.

2) Independent Component Analysis: Independent compo-
nent analysis (ICA) has been adopted as a method for con-
structing base images for EMPs and EAPs for hyperspectral
FE [13], [15]. It is a multivariate data analysis method for
blind source separation of signals which seeks to render the
components as statistically independent as possible. The basic
model of ICA is

Y = Wiga X (7)

which aims to find a separating matrix W and generate a
few independent components (ICs) by solving the statistical
independence function. Two representative ICA algorithms are
carried out in this study:

a) Fast-ICA [19]: Tt is a fixed-point algorithm based
on an optimization of negative entropy function. Specifically,
Fast-ICA is realized by maximizing

Jo(w) = [B{Gw 2)} ~ E{G(v)}] ®)
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subject to E{(w”r)?} =1, where the function G(-) is a
sufficiently regular nonquadratic function, and v is a standard-
ized Gaussian variable. E{G(w”z)} is the Gaussian moment
of the data. The fast-ICA algorithm estimates the independent
components one by one using a deflation scheme [19].

b) Joint approximation diagonalization of eigenmatrices-
ICA [36]: The JADE algorithm aims at exploiting the higher
order statistics and performing joint diagonalization on the
cumulant matrix. The optimization process can be described
by the following function [36]:

V = arg min (Z off (V*Q7 V)) )

where V' is an orthonormal transformation matrix of the
whitened data, Q7 is a maximal set of cumulant matrices,
V is the rotation matrix, and VV* is the generalized inverse of
V. The function Off denotes the sum of the squares of the
nondiagonal elements of a matrix.

3) Nonnegative Matrix Factorization: The NMF method,
originally proposed for human face recognition [37], is an
effective approach for multivariate data analysis. It has been
successfully applied to endmember analysis and FE for
hyperspectral imagery [38], [39]. NMF aims to transform
high-dimensional data into a low-dimensional and nonnegative
linear subspace. Given a high-dimensional observed feature

r€Rf,y and a Dbasic coefficient vectors A=
[a1,a9,...,ap), a linear approximation of the data can
be described by

= AS;, i=1,...,N st. S;>0, A>0 (10)

where S € RZX 18 the weight coefficient matrix. To solve the
nonnegative condition of NMF, different constraints can be im-
posed on the objective function. One natural way is to realize

min f(A, §) = || X — AS|. 11

In this study, a constrained NMF, which was recently devel-
oped for hyperspectral unmixing in our previous work [20], is
adopted here to generate the base images from hyperspectral
images. The CNMF algorithm improves the original NMF by
considering an additional spectral dissimilarity measure, which
is defined by the spectral gradient. One can refer to [20] for
additional details.

4) Factor Analysis: Factor analysis (FA) is able to search
for the possible underlying factor structure of a set of measured
variables without imposing any preconceived structures on the
outputs [21]. A factor is defined as an unobservable feature
that is assumed to influence the observed ones. The goal of
FA is to reveal such relations, and thus can be used to reduce
the feature dimension [40]. Specifically, an N-dimensional
variable X is reduced to a K-dimensional variable Z by the
following transformation:

Z=EZ|X)=T+ATo ) AT Y (X —p) (12)

where A and V¥ are randomly initialized, and ¥ is not singular.
w1 is the mean of the N-dimensional vectors. More details
about FA can be found in [40].

The linear transformations, such as PCA or ICA, are cur-
rently the most widely used methods for generating base
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images. In this study, the NMF and FA algorithms are
considered for extracting base images for MPs for the first
time. NMF is a nonnegative part-based image representation
approach, which is appropriate for the subsequent morpho-
logical FE. FA has a potential for identification of groups
of interrelated variables and reduction of number of vari-
ables, by combining two or more variables into a single
factor [41]. Therefore, FA is consistent with the definition of
base images and it is interesting to see its performance for
generating MPs.

B. Nonlinear Transformations

Compared to the linear transformations, nonlinear methods
are capable of capturing higher order statistics and, hence,
exhibit potential to better represent the hyperspectral informa-
tion. Accordingly, the KPCA has been used to generate base
images for EMPs [12], [33] and EAPs [16]. In this study, in
addition to the KPCA, the KNMF is also tested in regards to
its capacity to provide base features.

The basic principle of kernel mapping is to project the
original feature space, in which the classes of interest cannot
be linearly separated, into a higher dimensional space, in
which these classes may be linearly separated. The kernel
method realizes this nonlinear mapping via the function

K(z,y) = ¢(x) - 2(y) (13)
which is defined by specifying the inner product in the
feature space. The KPCA and KNMF algorithms are briefly
introduced below.

1) Kernel PCA: KPCA aims at solving the following
eigenvalue problem:

1
A =Kuv, st. |vl2=~< (14)

A
where K is the kernel of KPCA that can convert the dot
product in the feature space to a function in the input space.
Similar to PCA, the first k& principal components derived from
KPCA can be extracted according to the eigenvector ranking.
Readers can refer to [12] for details.

2) Kernel NMF: As mentioned above, NMF is an efficient
method for hyperspectral image representation. NMF has been
extended to a kernel version, KNMF, which is able to extract
nonlinear features hidden in the original data [23]. KNMF
can be derived from the framework of NMF. Given a higher
or infinite dimensional feature space, the nonlinear mapping
can be expressed by

zi = (i) or X = ¢(X) = (¢(z1), ..., d(xn)).  (15)

Similar to NMF, the KNMF decomposition can be repre-
sented by ¢(X) ~ A,S. In the convex NMF model [56], Ay
is restricted to a convex combination of the observed features
Ay = x; G with negative coefficient G. Therefore, KNMF is
realized by the following objective function:

lP(X) = As(9)]* = [lo(X) — (X)GS|?
= Tr [¢(X)T¢(X) — 286(X)"$(X)G
+GTo (X)T(X)GSST] . (16)

From (16), it can be seen that the transformation depends
only on the kernel.
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C. Manifold Learning

Manifold learning seeks for an embedded nonlinear mani-
fold within the higher dimensional space (e.g., hyperspectral
data). It is able to reduce the dimensionality of the original
data and represent its intrinsic structure by constructing non-
linear low-dimensional manifolds. Manifold learning has been
introduced for representation of the hyperspectral information
by deriving a manifold coordinate system from the geodesic
distances between pixels of the underlying nonlinear hyper-
spectral data manifold [24]. It should be noted that, to our
knowledge, manifold learning has not been used previously
for producing base images for MPs. Accordingly, in this paper,
two manifold algorithms, LPP and NPE, are considered.

1) Locality-Preserving Projections: LPP represents image
data by building a graph which can model the neighborhood
information [25]. It is able to preserve the local structure of the
image space by explicitly considering the manifold structure.
It is solved by optimizing a generalized eigenvalue problem

XLXTA=XXDXTA (17)
where D;; = > W, is a diagonal matrix and L = D — W is

J
the Laplacian matrix. The mapping achieved by transformation
A can be realized by minimizing the objective function

min Y [y — y; W (i, 5)

ij=1

(18)

where y; = ATz, and the weight matrix W is constructed via
the nearest-neighbor graph.

2) Neighborhood-Preserving Embedding: NPE is a linear
approximation ofthe locally linear embedding (LLE) [42],
which makes it fast and suitable for practical implementation.
Given a set of points z1, x, ..., Z,, in the ambient space, an
adjacency graph is firstly constructed to describe the relation-
ship between neighboring pixels. The weights of the edges for
the graph are computed by minimizing the objective function

2

min Tr; — E Wij.’L'j N s.t.
JENk(x;)

> Wi =119

JENK(25)

Subsequently, the linear projection is obtained by solving
the following generalized eigenvector problem:

XMXTa =2 XX"a (20)

where M = (I — W)T(I — W). For more details about NPE,
readers can refer to [26].

D. Multilinear Transformation

Multilinear PCA [27], which extends the original PCA by
representing the data as tensors, has been recently explored for
hyperspectral image classification [43]. The conventional PCA
vectorizes the tensor data, leading to insufficient representation
for remote sensing imagery. The MPCA that aims to extract the
hyperspectral image as a cube (third-order tensor) is, however,
more suitable for representing the spectral-spatial information
of the original data. In analogy to the PCA, MPCA is carried
out by the following steps.
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1) Centralization: A tensor sample x is subtracted by its
mean YY), resulting in a centered tensor x¢, which can
be decomposed using high-order SVD (HOSVD) [17]
as follows:

Xe=8x, UMW 5o U® ..o xy UM (21)
where S is the core tensor, UY) is the basic matrix,
and S xx UM is the N-mode product of a tensor S
by a matrix U.

2) Orthonormal projection: The HOSVD of x¢ is truncated
by keeping the first R,, columns for the basismatrix U/ (")

in each mode to produce U (n), which is associated with
the most significant eigentensors. The tensor projection
can thus be achieved by
p,Nleﬁ(l)T X9 U(Z)TX“-XN U(N)T (22)
3) Dimensionality reduction: A centered input tensor Z¢ of
order (N — 1) is projected to a tensor subspace by

Yy = ZCXP_N
= Z° XlU(l

)T X9 g X"'XNU(N)T. (23)
For more details about MPCA, readers can refer to [17]
and [27].

IV. MULTIPLE MORPHOLOGICAL PROFILES

An important objective of this study is to investigate and
assess the performance of different FE methods for the gener-
ation of base images from hyperspectral imagery. It should
be noted that one can obtain a set of MPs from multiple
base images. Considering the different principles and the
possible complementarities among these base images, it is
worth attempting to construct multiple MPs, which have the
potential to better represent the spectral-spatial characteristics
of the hyperspectral imagery.

Naturally, there are two strategies for exploiting the MMPs
for hyperspectral image classification (see Fig. 1). The first
one is to classify the stacked MMPs. In this case, it should
be noted that a linear classifier is adequate since the construc-
tion of MMPs leads to hyperdimensional data and a sparse
feature space, which has sufficient discriminative information
for classification. Nonlinear classifier, such as the kernel-
based SVM, which projects the original feature space into a
higher dimensional space in order to enhance the separability,
may complicate the problem and lead to overfitting of the
classification model for the MMPs. In this study, an efficient
solution to this problem is discussed in Section IV-A. The
other strategy is to carry out a decision fusion on the MMPs,
i.e., the MMPs are individually interpreted using a set of
subclassifiers and the decision results are then synthesized
via a fusion rule. In this way, one can avoid the related
issues resulting from the classification of the hyperdimensional
feature. The aforementioned two strategies are explained in
detail as follows. It should be underlined that the contribution
of this paper refers to the concept of MMPs, but not to the
feature fusion algorithms.The stacking or decision fusion is

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 12, DECEMBER 2014

Linear Base image #1

Base images
transformation 3

Base image #2
A Base image #3
transformation ¢ .
Multilinear Base image #4
transformation ..
Manifold
learning

Decision fusion
*Voting
*Uncertainty
*Probability

Fig. 1. General framework of this study.

one of the specific methods for carrying out the MMPs for
classification.

A. Stacked MMPs

In this work, we propose to use the multinomial logistic
regression (MLR) [44] to classify the stacked MMPs taking
into account its capability for processing hyperdimensional
data. MLR [44] as well as its sparse version SMLR (sparse
MLR) [45]-[47], modeling the class posterior densities in-
stead of the joint probability distribution, has the advantage
of being able to adequately interpret very high-dimensional
feature spaces. The fast SMLR algorithm [48], which opti-
mizes the applicability of SMLR to high-dimensional datasets,
has proved to be efficient for classification of hyperspectral
images [49], [50]. More recently, the LORSAL algorithm
[29] has been proposed to further significantly reduce the
complexity to learn the MLR classifier. The basic principle
of the LORSAL algorithm is to replace a difficult nonsmooth
convex problem with a set of quadratic and diagonal prob-
lems, which are much easier to solve [50]. Therefore, LOR-
SAL is used here to interpret the hyperdimensional stacked
MMPs. For more details about LORSAL, readers can refer
to [50] and [52].

B. Decision Fusion

Decision fusion is also an efficient approach for processing
MMPs. Specifically, the morphological profiles derived from
different base images are classified separately and the final
decision result is obtained by a fusion rule. In this study, the
following three rules are used.

1) Voting: Majority voting selects the label that receives
the largest votes from a series of subclassifiers as the final
result [51]

C(z,) = arg max (Vote, (z)) (24)

k

where C'(z,.) is the decision result for pixel « and Votey(z)
is the number of votes for class k (k. =1,..., K).
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2) Probability: The second decision fusion strategy is
based on the posterior probabilities, which actually compares
the soft output of the L subclassifiers [10]

L
C(a,) = argmax 3 p(a)
k

=1

(25)

where pF(z) is the posterior probability of pixel = belonging
to class k with the [th classifier.

3) Uncertainty: The certainty of the classification for each
pixel can be assessed based on its posterior probabilities
[10]. A large value of certainty signifies the classification for
the pixel is reliable. Consequently, the certainty measure can
be used as the weight of the probabilistic output in order
to enhance the reliability of the voting. By considering the
classification certainty measure S(x) for each pixel, (25) can
be extended to

L
C(z,) = argmax{i ZSl(x) pf(x)}

(26)

where p1(x),...,pr(x),...,pr(x) represents the class prob-
abilistic outputs in a descending order.

V. EXPERIMENTS
A. Datasets and Experimental Setting

The experiments are carried out using three hyperspectral
images. The first two datasets widely used hyperspectral
images for model validation, which were acquired over the city
of Pavia (Italy) by the ROSIS-03 sensor. For these datasets,
both images have a spatial resolution of 1.3 m with 115
spectral bands, ranging from 0.43 to 0.86 pm. In addition,
noisy bands were removed, leading to 103 and102 channels
for the Pavia University and Centre images, respectively. The
Pavia University dataset is composed of 610 x 340 pixels and
a total of 42 776 pixels for testing the classifiers. With respect
to the Pavia Centre image (1096 x 715 pixels), the available
test samples are148 152 in pixels.

The DC dataset was collected by HYDICE sensor in
August 1995 over the Washington, DC Mall, which originally
contained 210 bands within the 0.4-2.4 pum region. Noisy
channels due to water absorption were removed, resulting in
191 spectral channels. The image contains 1280 x 307 pixels,
with a total of 19 332 pixels available for testing the classifiers.

The number of available test samples for each dataset is
given in Table IV. The number of the training samples for
each class of ROSIS and HYDICE data is 150 and 100,
respectively. The training samples are generated randomly
from the reference. The false color images and reference maps
of the test datasets are displayed in Fig. 2.

The parameter settings are listed below.

1) The morphological filters: EMPs were calculated

using a disk SE and their radius range from 2 to
8 with step size of 1 pixel. The parameters of the
EAPs were defined according to [15]: 1) area of
the regions (A, =[100 500 1000 5000]); 2)
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TABLE IV
TEST SAMPLES FOR THE THREE DATASETS
University Number] Centre  Number | DC Mall Number

Trees 2064 Water 65971 Roads 3334
Asphalt 6631 Tree 7598 Grass 3075
Bitumen 1330 | Asphalts 9248 Water 2882
Gravel 2099 Bricks 2685 Trails 1034
Metal sheets 1345 | Bitumen 7287 Trees 2047
Shadow 947 Tiles 42 826 | Shadow 1093
Bricks 3682 | Shadow 2863 Roofs 5867

Meadows 18 649 | Meadows 3090

Bare soil 5029 | Bare soil 6584
Total 42776| Total 148 152 Total 19332

Fig. 2. (a) False color image for the University Area dataset. (b) False color
image for the Pavia Centre dataset. (c) False color image for the Washington
DC dataset.

length of the diagonal of the box bounding the region
(M =1]10 25 50 100]); 3) first moment of
inertia (A\; =[0.2 0.3 0.4 0.5]); and 4) standard
deviation of the gray-level values of the pixels in the
regions (A, =[20 30 40 50]).
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TABLE V
CLASS-SPECIFIC ACCURACIES (%) OF EMPS FOR THE UNIVERSITY AREA DATASET

Accuracy  Raw PCA JADE-ICA Fast-ICA CNMF FA KPCA KNMF LPP NPE MPCA
AA 729 84.8 84.9 85.2 82.9 80.4 80.6 79.8 82.5 81.0 83.8
OA 69.9 87.7 87.8 87.9 84.5 82.4 83.4 84.1 83.3 81.4 84.5

KAPPA  63.0 83.8 83.9 84.0 79.3 76.9 77.9 79.1 78.0 75.7 79.4
Trees 63.8 88.7 88.5 88.4 84.2 72.8 76.7 76.4 78.7 84.4 82.5
Asphalt  87.7 94.4 94.4 94.3 95.7 94.1 91.8 91.6 89.2 90.6 94.8
Bitumen  61.0 83.2 83.1 84.1 80.2 75.8 78.4 81.1 63.5 56.9 92.7
Gravel 53.4 54.8 55.4 57.1 51.9 48.6 48.2 41.9 87.6 84.7 40.0
Metal sheet  92.1 92.8 92.9 93.1 94.0 95.0 86.8 80.8 96.9 99.8 93.6
Shadow  96.9 100.0 99.9 99.9 99.5 99.8 99.2 97.0 98.8 98.2 100
Bricks 66.9 68.0 68.0 67.7 66.2 67.0 74.1 74.3 56.3 61.0 74.0
Meadows ~ 94.2 94.6 94.6 94.5 89.4 89.9 89.5 93.6 92.1 90.7 90.3
Baresoil  40.4 86.6 87.0 87.4 85.2 80.5 80.6 81.4 79.7 63.0 86.2

2) Classifier: Considering the hyperdimensionality of
MPs, linear SVM was used for classification purposes,
with penalty coefficient = 1.

3) Base image construction: According to [3], [5], [6], [8],
and [10], four base images were here extracted from the
hyperspectral images since they can achieve a tradeoff
between the computational burden and classification
accuracy. The RBF kernel function was adopted for the
kernel-based methods. As suggested in [27],the number
of iterations of MPCA was set to 1.

4) Accuracy assessment: In experiments, the overall accu-
racy (OA), the average accuracy (AA), and the kappa
coefficient (Kappa) computed from the confusion matrix
are used to quantitatively evaluate the classification ac-
curacies. It should be noted that all the experiments were
repeated ten times with different starting training sets
and the average accuracies are reported in Tables V-X.

B. Comparison of Methodologies for Extracting Base Images

In this section, a comparative analysis is conducted among
the MPs derived from different base images.

1) Pavia University Area: The SVM classification results
of EMPs and EAPs for the University Area are reported in
Tables V and VI, respectively. The classification maps of
different features are shown in Fig. 3. For this dataset, the
raw spectral-based classification has problems in correctly
classifying the nine information classes, resulting in an overall
accuracy of 69.9%. In particular, very low accuracies were
obtained for Trees (63.8%), Gravel (53.4%), and Bare soil
(40.4%). The exploitation of either EMPs or EAPs for classi-
fication can significantly improve the results regardless of the
specific base images used. It can be seen from Tables V and
VI that PCA is not always the optimal strategy to generate
the base images. In the case of EMPs, for instance, JADE-
ICA and Fast-ICA gave better results than PCA in terms of
average accuracies (AA). With respect to the case of EAPs,
the JADE-ICA, FA, MPCA, and LPP outperformed PCA. Note
that the methods which produced results better than PCA are
highlighted in bold typeface.

2) Pavia Centre: The classification results of the EMPs and
EAPs for the Pavia Centre are reported in Tables VII and VIII,

respectively. Classification maps of different feature combina-
tions are shown in Fig. 4. For this dataset, the traditional spec-
tral classification yields satisfactory accuracies: OA = 96.9%,
AA =90.5%, and Kappa = 0.96. Similarly, the consideration
of MPs into classification shows better results than the original
hyperspectral classification. In the case of EMPs, JADE-ICA
and Fast-ICA provided higher accuracies than PCA once
again. In addition, it can be seen that CNMF, KPCA, MPCA,
and LPP also outperformed PCA. In the case of EAPs, PCA
seems the most appropriate base images since it gave the
highest AA (96.3%) and OA (98.9%). Note that, however,
Fast-ICA achieved similar results with PCA (AA = 96.3% and
OA = 98.8%).

3) Washington DC: The classification results for the HY-
DICEDC data are reported in Tables IX and X, with classi-
fication maps shown in Fig. 5. The pixelwise classification
accuracies based on the original hyperspectral image are
OA = 88.4%, AA =84.9%, and Kappa = 0.86. Similarly,
the original spectral classification was substantially improved
by taking the morphological profiles into account, especially
for the classes of roads, trails, and shadows. In the EMPs-
based classification, the highest accuracy was achieved by the
MPCA (AA = 98.9%), while PCA ranked the second place,
followed by KPCA and Fast-ICA. As for the EAPs-based
experiment, the JADE-ICA and Fast-ICA provided the best
results in terms of quantitative accuracies, followed by the
MPCA. Furthermore, FA, KNMF, and NPE outperformed the
PCA base images.

The percentage of improvement for the AA obtained by the
MPs-based classification compared to the raw spectral-based
classification is shown in Fig. 6 for a visual comparison. The
performance of the different methods considered in this study
to extract base images is generally summarized in Table XI,
where the base image construction methods which outper-
formed PCA in terms of AA in experiments are underlined
using the symbol “y/.” It is interesting to see that the JADE-
ICA and MPCA, used to produce base images for MPs,
achieved better classification results than PCA in four of the
six experiments. In addition, the Fast-ICA gave comparable
results since it outperformed PCA in half of the experiments.
Moreover, in order to further investigate their performance,
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TABLE VI
CLASS-SPECIFIC ACCURACIES (%) OF EAPS FOR THE UNIVERSITY AREA DATASET

Accuracy  Raw PCA JADE-ICA Fast-ICA CNMF FA KPCA KNMF LPP NPE MPCA

AA 72.9 94.4 95.8 92.7 94.3 95.3 93.9 93.2 94.8 92.2 94.8
OA 69.9 95.9 96.8 93.1 95.4 95.8 94.1 92.3 96.1 92.6 95.5
KAPPA  63.0 94.6 95.7 90.9 94.0 94.5 92.3 89.9 94.9 90.2 94.1
Trees 63.8 78.1 79.3 81.5 73.6 71.7 73.7 65.6 84.2 80.3 78.7
Asphalt ~ 87.7 99.2 99.3 96.7 99.4 99.3 98.5 98.8 98.4 93.5 99.2
Bitumen  61.0 99.9 99.9 93.5 99.8 100.0 99.9 100.0 99.1 88.0 100.0
Gravel 53.4 88.2 97.0 89.9 92.3 94.5 94.6 95.4 95.5 90.0 91.2
Metal sheet  92.1 95.9 96.1 99.4 97.3 98.2 96.9 98.0 96.6 99.8 95.4
Shadow  96.9 99.9 99.5 99.8 99.4 99.7 99.8 99.7 97.4 99.9 99.9
Bricks 66.9 90.3 91.8 83.2 88.6 91.3 86.0 89.4 82.8 84.8 91.0
Meadows ~ 94.2 99.4 99.6 95.8 99.6 98.1 96.7 94.5 99.8 95.3 97.8

Baresoil  40.4 99.1 99.3 94.6 98.8 99.2 99.3 97.6 99.1 98.4 99.7

TABLE VII
CLASS-SPECIFIC ACCURACIES (%) OF EMPS FOR THE PAVIA CENTRE DATASET

Accuracy Raw PCA JADE-ICA Fast-ICA CNMF FA KPCA KNMF LPP NPE MPCA
AA 90.5 93.4 94.6 94.7 94.1 93.2 93.8 90.9 94.0 92.0 95.0
OA 96.9 97.8 98.0 98.4 97.5 97.7 97.9 96.6 979 97.3 98.2

KAPPA  95.6 96.9 97.2 97.7 96.4 96.7 97.0 95.2 97.0 96.2 97.4
Water 100.0  100.0  100.0  100.0 100.0  100.0 100.0  100.0  99.8 99.9 99.9
Trees 97.9 98.4 98.5 97.2 99.2 98.8 98.7 97.7 96.7 98.8 98.0

Asphalt  87.4 88.7 87.9 95.5 78.6 87.9 87.5 80.2 923 85.1 89.1
Bricks 65.5 84.7 91.5 89.1 87.0 85.7 79.0 82.3 78.8 77.8 95.1

Bitumen  86.6 91.4 92.5 91.4 96.1 91.1 91.2 92.4 94.6 90.3 96.5
Tiles 99.8 99.9 99.8 100.0 99.9 99.8 100.0 99.7 99.4 99.8 100.0

Shadow  100..0  100.0 99.9 98.5 99.9 99.9 100.0  100.0 99.6 90.0 100.0

Meadows ~ 83.3 82.1 83.2 83.3 89.6 80.2 92.1 71.8 89.6 91.1 81.0

Bare soil ~ 94.2 95.7 98.4 97.2 96.9 95.1 95.7 93.9 95.2 95.2 95.4

TABLE VIII
CLASS-SPECIFIC ACCURACIES (%) OF EAPS FOR THE PAVIA CENTRE DATASET

Accuracy Raw PCA JADE-ICA Fast-ICA CNMF FA KPCA KNMF LPP NPE MPCA
AA 90.5 96.3 95.4 96.3 96.1 95.6 92.0 93.9 96.0 93.3 95.9
OA 96.9 98.9 98.6 98.8 98.6 98.2 96.8 97.3 98.0 96.9 98.4

KAPPA  95.6 98.5 98.0 98.3 98.0 97.5 95.6 96.2 97.2 95.6 97.8
Water 100.0  100.0  100.0 100.0 99:9 99.8 99.8 99.9 99.7 99.5 100.0
Trees 97.9 98.3 98.0 97.9 97.4 97.7 97.2 97.6 97.9 98.7 98.5

Asphalt  87.4 96.2 94.6 93.0 91.6 87.5 87.4 79.8 93.9 75.9 88.6
Bricks 65.5 95.1 94.4 97.0 97.1 98.0 90.7 98.6 94.0 94.8 99.1

Bitumen  86.6 98.8 97.5 98.9 98.4 98.6 94.2 97.3 99.1 94.3 972
Tiles 99.8 99.9 99.9 99.9 99.9 99.9 98.9 99.9 97.6 99.9 99.9

Shadow  100..0  100.0  100.0 99.9 100.0  100.0  100.0  100.0 99.6 89.3 100.0

Meadows ~ 83.3 78.7 75.1 80.9 81.3 79.0 65.4 72.8 83.3 88.8 80.1

Bare soil ~ 94.2 99.6 99.2 99.5 99.4 99.6 94.8 99.2 98.5 98.8 99.3

all the base images are ranked from one to ten in terms classification. Table XI shows that the top three base images
of their accuracies achieved in the six experiments, and the are MPCA (score = 2.8), Fast-ICA (score = 3.2), JADE-ICA
final score (Table XI) is computed as the average ranking (score = 3.3), respectively, significantly outperforming PCA
in all the tests. Accordingly, a smaller ranking score infers (score = 4.2). In addition, the average AA for each method
that this base image is more appropriate for MPs-based image across different datasets is reported in the table. Similarly, the
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TABLE IX
CLASS-SPECIFIC ACCURACIES (%) OF EMPS FOR THE WASHINGTON DC DATASET

Accuracy Raw PCA JADE-ICA Fast-ICA CNMF FA KPCA KNMF LPP NPE MPCA
AA 84.9 98.5 97.2 97.8 97.0 97.1 97.9 95.2 96.4 96.5 98.9
OA 88.4 98.7 98.1 98.0 98.0 98.1 98.3 96.8 96.8 953 98.9

KAPPA  86.0 98.4 97.6 97.5 97.6 97.7 98.0 96.1 96.1 95.4 98.7
Roads 87.6 98.1 97.5 93.5 99.4 97.0 97.1 94.4 90.3 97.1 97.7
Grass 97.1 98.5 98.1 98.7 99.0 98.9 98.4 99.8 97.8 97.9 98.8
Water 99.1 100.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0 99.6 100.0
Trails 50.1 96.0 89.6 94.8 94.8 92.0 92.9 76.2 94.6 93.2 99.6
Trees 96.2 99.0 99.0 99.7 97.7 99.9 99.3 100 99.6 96.3 98.0

Shadows ~ 66.5 99.5 97.8 98.7 90.0 93.0 98.8 96.7 93.8 93.4 98.4
Roofs 97.7 98.8 98.8 99.2 98.1 99.0 98.8 99.0 98.7 98.2 99.4

TABLE X
CLASS-SPECIFIC ACCURACIES (%) OF EAPS FOR THE WASHINGTON DC DATASET
Accuracy Raw PCA JADE-ICA Fast-ICA CNMF FA KPCA KNMF LPP NPE MPCA

AA 84.9 95.5 97.2 97.5 93.1 95.9 95.3 96.6 94.0 95.6 96.8
OA 88.4 97.3 98.1 98.3 95.6 97.6 96.8 97.7 96.4 97.1 98.0

KAPPA 86.0 96.7 97.7 98.0 94.6 97.0 96.1 97.2 95.6 96.4 97.6

Roads 87.6 97.9 97.5 98.4 99.6 97.9 95.4 98.9 97.4 98.2 97.7

Grass 97.1 98.5 97.6 98.9 98.8 98.4 97.4 98.2 97.5 99.6 98.8

Water 99.1 100.0 100.0 100.0  100.0 100.0 100.0 100.0 100.0 100.0 100.0

Trails 50.1 85.0 93.0 93.3 69.8 84.6 88.3 93.7 74.5 89.3 89.5

Trees 96.2 98.7 99.6 98.7 94.2 99.3 98.1 96.5 99.6 92.0 97.6

Shadows  66.5 89.6 93.8 94.2 92.0 92.1 89.4 90.7 89.9 91.9 94.6

Roofs 97.7 98.8 99.2 98.8 97.5 99.0 98.7 98.3 99.0 98.2 99.3

M Trees 7 Asphalt [ Bitumen

Gravel 1 Metal sheet

(©)
Shadow M Bricks

Meadows Il Bare soil

Fig. 3. SVM classification results for (a) the 103-D hyperspectral image of University area; (b) Fast — ICA + EMPs; (¢) JADE — ICA 4+ EAPs; and

(d) the ground truth map.

MPCA obtains the highest accuracy (94.20%), followed by
JADE-ICA (94.18%) and Fast-ICA (94.03%), which outper-
form PCA (93.82%).

Traditional base images are extracted from the original
hyperspectral space in a vector-based manner, with each
vector representing the spectral information at a certain lo-
cation. Such methods do not effectively take advantage of

the spectral-spatial correlation between neighboring pixels.
However, the multilinear PCA, which aims to process the
hyperspectral image as a cube (third-order tensor), is more
capable of representing the spectral-spatial information in the
original data. As revealed in this experiment, MPCA is the
optimal approach for generating base images of the MPs for
the subsequent spectral-spatial classification. In addition, it is
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(d

M Water [ Trees B Asphalt  Bricks Bitumen M Tiles B Shadow M Meadows M Bare soil

Fig. 4. SVM classification results for (a) the 103-D hyperspectral image of University area; (b) Fast — ICA 4+ EMPs; (¢) PCA + EAPs; and (d) the ground

truth map.

(@ ()

(1 Roads
Grass
B Water
Trails

B Trees
I Shadows
Roofs

Fig. 5. SVM classification results for (a) the 103-D hyperspectral image of University area; (b) MPCA + EMPs; (¢) Fast — ICA + EAPs; and (d) the

ground truth map.

found that ICA methods are more appropriate than PCA for
producing base images. This phenomenon can be attributed to
the fact that ICA, making use of statistical independency as a
criterion to separate components, has a potential for avoiding

the information loss in the PCA transformation. As for the
manifold leaning, it is shown that LPP is better than NPE in
terms of the classification accuracies and the ranking scores,
but generally speaking, they did not achieve comparable results
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Fig. 6. Percentage of improvement for the AA obtained by the MPs(APs)-
based classification methods compared to the raw spectral-based method.

to PCA. This result can be attributed to the fact that, in most
cases, the intrinsic dimensionality of the data is very high [54].
Consequently, the manifold transformation could not provide
better results than PCA with low-dimensional base images.

C. Impact of the Number of Training Samples

In order to investigate the impact of the number of training
samples to the classification, four groups of training samples
are used in the University dataset: 25, 50, 75, and 150 pixels
for each class. The classification accuracies based on different
base images, as a function of the number of samples, are
compared in Fig. 7. In general, the accuracies are relatively
insensitive to the number of training samples, especially for
the EAPs. It can be observed that the MPCA as well as the
ICA achieve high accuracies in most of the cases regardless
of the number of training samples. This is consistent with the
results in the aforementioned experiments.

D. Analysis of MMPs

The accuracies of MMPs are provided in Table XII. The
three most effective methods for extracting base images
(MPCA, JADE-ICA, and Fast-ICA) and their respective MPs
were used to build the MMPs. From the table, it can be
seen that the performance of the MMPs is dependent on the
morphological features used.

In the case of the decision fusion of EMPs, the MMPs did
not produce better results than the best available individual
base images. For instance, the AA decreased by about 0.6%
and 2.4% in average for the Pavia University and Washington
datasets, respectively. However, the situation is quite different
in the case of EAPs, where the accuracies obtained by MMPs
were higher than those obtained by the best available base im-
ages, and the improvements in terms of AA were 1.9%, 2.2%,
and 1.1% on average, respectively, for the Pavia University,
Centre, and Washington datasets. Considering the fact that the
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classification accuracies based on individual MPs are already
quite high, the accuracy increments obtained by the MMPs
are promising. With respect to the fusion methods, it is shown
that the probability and uncertainty algorithms are better than
the majority voting methods.

Considering the stacked MMPs, it can be seen that the accu-
racies obtained by the EAPs are also higher than the accuracies
obtained by the EMPs in all the experiments. It can be stated
that the EAPs show much better discriminative ability than
EMPs for hyperspectral urban classification. Accordingly, the
analysis here focuses on the EAPs. In general, the LORSAL
classifier outperforms the linear SVM in all the three datasets
for interpreting the MMPs, which verifies the efficiency of the
LORSAL classifier for processing hyperdimensional data.

Generally speaking, the MMPs based on the EMPs gave
similar accuracies as those achieved by the best available base
images. The MMPs based on the EAPs, however, provided
better or comparable results than the EAPs extracted from indi-
vidual base images. Both decision fusion and stacked strategies
are effective in synthesizing and classifying the hyperdimen-
sional feature of MMPs. In particular, it is found that the sparse
multinomial logistic regression optimized with the LORSAL
algorithm is a very efficient scheme for classifying the MMPs.

E. Comparisons

In this paper, our focus is mainly on the use of unsu-
pervised FE strategies for generating base images for MPs.
A particular feature of such unsupervised methods is that
they are data-driven and self-adaptive. On the other hand,
however, the effectiveness of supervised FE methods highly
relies on the chosen samples. Moreover, supervised methods
tend to significantly increase the feature dimensionality of the
MPs, since the commonly used supervised FE methods, e.g.,
DAFE (discriminant analysis feature extraction), DBFE (deci-
sion boundary feature extraction), and NWFE (nonparametric
weighted feature extraction) [55], need approximately 20 base
images to effectively represent a hyperspectral image. This
will lead to a hyperdimensional and redundant MPs feature
space. Instead, with respect to the unsupervised methods, it is
found that only four base images are generally effective for
building the MPs.

In Table XIII, we compare the performance of unsupervised
and supervised FE methods as base images for classification
based on EAPs. Readers can refer to [55] for a detailed expla-
nation of the parameter settings for the supervised methods.
It is shown that some unsupervised FE methods have the
potential to provide better results than the supervised ones.
In addition, the MMPs constructed on the multicomponent
base images can further increase the classification accuracy
by about 3%. It should be kept in mind that a large amount of
training samples are needed for the supervised methods, while
the unsupervised ones are carried out automatically and are
adaptive to the specific image data. The supervised strategies
may be less effective in many practical scenarios (especially
when dealing with large datasets), since the labeled samples
might not be sufficient for properly and completely modeling
the heterogeneity of the data [55].
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TABLE XI
GENERAL COMPARISON OF BASE IMAGE CONSTRUCTION METHODS
. University Centre Washington DC Score Averaged AA
Base images
EMPs | EAPs |[EMPs| EAPs | EMPs | EAPs | (PCA=4.2)
JADE-ICA| < \ v \ 3.3 94.18
, Fast-ICA | v N 3.2 94.03
Linear
CNMF S 5.8 92.92
FA 3 \ 6.0 92.92
_ KPCA \ 7.0 92.25
Nonlinear
KNMF ) 8.3 91.60
Multilinear| MPCA v V R\ \ 2.8 94.20
Manifold | LPP \/ 3 6.2 91.76
Learning | NPE w/ 8.2 92.95
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Fig. 7. Classification accuracies (in percentage) for different training sample sizes (Pavia University dataset).

TABLE XII
ACCURACIES OF MMPS FOR THE THREE HYPERSPECTRAL DATASETS (“OPTIMAL” INDICATES THE ACCURACIES OBTAINED BY THE BEST
AVAILABLE BASE IMAGES)

EMPs EAPs
Decision fusion Stacked Decision fusion Stacked
Optimal Voting Probability Uncertainty L-SVM LORSAL | Optimal =~ Voting Probability Uncertainty L-SVM ~ LORSAL

University AA 852 844 847 847 856 843 95.8 97.5 97.8 97.7  96.8 98.2
OA 879 88.0 88.0 87.8 85.0 872 96.8 97.0 97.4 974  97.6 98.6

Centre AA 95.0 954 95.8 95.9 95.6 944 96.3 98.4 98.5 98.5 97.0 97.7
OA 982 980 982 982 982 977 98.9 99.1 99.0  99.0 99.0 98.8

Washington AA  98.9 96.0 96.7 96.8 98.1 978 97.5 98.5 98.6 98.6 97.6 98.5
OA 989 98.2 98.4 984 979 96.7 98.3 99.1 99.1 99.0 978 98.4

TABLE XIII

COMPARISON BETWEEN UNSUPERVISED AND SUPERVISED FE METHODS FOR PRODUCING THE BASE IMAGES FOR EAPS USING THE PAVIA
UNIVERSITY DATASET

Supervised [55] Unsupervised MMPs
DAFE DBFE NWEFE |JADE-ICA FA LPP MPCA DF LORSAL
AA 95.6 92.6 93.6 95.8 95.3 94.8 94.8 97.8 98.2
OA 96.6 91.6 89.2 96.8 95.8 96.1 95.5 97.4 98.6
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VI. CONCLUSION AND FUTURE LINES

In this study, a systematic investigation of techniques for
producing base images for the construction of morphological
profiles is conducted, and a novel technique based on MMPs
extracted from multicomponent base images is proposed. The
main contributions of this work can be summarized as follows.

1) A systematic study of different techniques for the con-
struction of base images for MPs was carried out, includ-
ing methods that were never considered for this purpose
in previous developments. Specifically, we considered
methods in four categories: linear, nonlinear, manifold
learning, and multilinear transformations. For instance,
the multilinear PCA and manifold learning algorithms
are used for the first time in this work to generate base
images for MPs.

2) A new concept of MMPs was proposed for integrating
the MPs derived from multiple base images since the
multicomponent base images have the potential to pro-
vide more effective spectral-spatial representations for
hyperspectral images. This multicomponent framework
represents a unique contribution of this work.

Extensive experiments were performed using three widely
used hyperspectral images with high-spatial resolution. Some
important observations resulting from our study can be sum-
marized as follows.

1) The MPCA, a tensor-based feature representation ap-
proach, is the most suitable strategy for generating base
images in terms of classification accuracies because it is
able to effectively model the spectral-spatial correlation
between neighboring pixels.

2) The ICA-based algorithms (JADE-ICA and Fast-ICA
in this study) are also more effective in producing
base images in terms of accuracies than the traditional
strategy, i.e., PCA.

3) Manifold learning methods did not outperform PCA
in our experiments, mainly because they need higher
dimensionality of the feature space to represent the data
manifold for hyperspectral images of complex scenes.

4) The proposed MMPs can further improve the classi-
fication accuracy as compared to the result achieved
by the most effective base images when using EAPs.
Moreover, the decision fusion and stacking strategies
are effective for integrating the information of MMPs for
hyperspectral image classification. In particular, the pro-
posed LORSAL-based sparse classifier can efficiently
classify the hyperdimensional space of MMPs.

In summary, it can be concluded that the newly introduced
MMP represents a promising method for MPs-based hyper-
spectral image classification. In the future, we plan to discuss
the influence of different base images for other spectral—
spatial classification, e.g., texture or object-based methods, as
well as to develop computationally efficient implementations
of the newly developed approaches using high-performance
computing architectures.

ACKNOWLEDGMENT

The authors would like to acknowledge Prof. P. Gamba,
University of Pavia, Italy, for providing the ROSIS data and

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 12, DECEMBER 2014

Prof. D. A. Landgrebe, Purdue University, USA, for providing
the HYDICE dataset. The authors also gratefully appreciate the
insightful suggestions from the anonymous reviewers, which
significantly improved the quality of this paper.

REFERENCES

[1] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and
J. C. Tilton, “Advances in spectral—spatial classification of hyperspectral
images,” Proc. IEEE, vol. 101, no. 3, pp. 652—-675, Mar. 2013.

[2] M. Pesaresi and J. Benediktsson, “A new approach for the morphological
segmentation of high resolution satellite imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 39, no. 2, pp. 309-320, Feb. 2001.

[3] J. A. Benediktsson, J. A. Palmason, and J. Sveinsson, “Classification of
hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491,
Mar. 2005.

[4] X. Huang, L. Zhang, and L. Wang, “Evaluation of morphological texture
features for mangrove forest mapping and species discrimination using
multispectral IKONOS imagery,” IEEE Geosci. Remote Sens. Lett.,
vol. 6, no. 3, pp. 393-397, Jul. 2009.

[5] X. Huang and L. Zhang, “Road centreline extraction from high-
resolution imagery based on multiscale structural features and support
vector machines,” Int. J. Remote Sens., vol. 30, no. 8, pp. 1977-1987,
Apr. 2009.

[6] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson,

“Spectral and spatial classification of hyperspectral data using SVMs

and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46,

no. 11, pp. 3804-3814, Nov. 2008.

M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone,

“Morphological attribute profiles for the analysis of very high resolution

images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747—

3762, Oct. 2010.

M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone,

“Extended profiles with morphological attribute filters for the analysis of

hyperspectral data,” Int. J. Remote Sens., vol. 31, no. 22, pp. 5975-5991,

Nov. 2010.

W. Liao, R. Bellens, A. Pizurica, W. Philips, and Y. Pi, “Classification

of hyperspectral data over urban areas using directional morphological

profiles and semi-supervised feature extraction,” IEEE J. Sel. Topics

Appl. Earth Observ. Remote Sens., vol. 5, no. 3, pp. 1164-1176, Aug.

2012.

[10] X. Huang and L. Zhang, “An SVM ensemble approach combining

spectral, structural, and semantic features for the classification of high

resolution remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens.,

vol. 51, no. 1, pp. 257-272, Jan. 2013.

K. Tan, E. Li, Q. Du, and P. Du, “Hyperspectral image classification

using band selection and morphological profiles,” IEEE J. Sel. Topics

Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 40-48, Jan. 2014,

doi: 10.1109/JSTARS.2013.2265697.

[12] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Kernel principal com-
ponent analysis for the classification of hyperspectral remote-sensing
data over urban areas,” EURASIP J. Adv. Signal Process., vol. 2009,
pp. 1-14, Feb. 2009.

[13] J. A. Palmason, J. A. Benediktsson, J. R. Sveinsson, and J. Chanussot,
“Classification of hyperspectral data from urban areas using morpholog-
ical preprocessing and independent component analysis,” in Proc. IEEE
Trans. Int. Geosci. Remote Sens., Jul. 2005, vol. 1, pp. 176-179.

[14] J. A. Palmason, “Classification of hyperspectral data from urban areas,”
M.S. thesis, Fac. Eng., Univ. Iceland, Reykjavik, Iceland, 2005.

[15] M. Dalla Mura, A. Villa, J. A. Benediktsson, J. Chanussot, and L.
Bruzzone, “Classification of hyperspectral images by using extended
morphological attribute profiles and independent component analysis,”
IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 542-546, May 2011.

[16] P. R. Marpu, M. Pedergnana, M. Dalla Mura, J. A. Benediktsson, and L.

Bruzzone, “Automatic generation of standard deviation attribute profiles

for spectral—spatial classification of remote sensing data,” IEEE Geosci.

Remote Sens. Lett., vol. 10, no. 2, pp. 293-297, Mar. 2013.

H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Multilinear

principal component analysis of tensor objects for recognition,” in Proc.

Int. Conf. Pattern Recognit., Aug. 2006, pp. 776-779.

[18] J. Zhang, S. Z. Li, and J. Wang, “Manifold learning and applications in
recognition,” in Intelligent Multimedia Processing With Soft Computing.
Berlin, Germany: Springer-Verlag, 2004, pp. 281-300.

[19] A. Hyvarinen, “Fast independent component analysis with noisy data
using Gaussian moments,” in Proc. Int. Symp. Circuits Syst., May 1999,
pp. 57-61.

[7

—

[8

—_

[9

—

[11]

[17]



HUANG et al.: MULTIPLE MPs FOR HYPERSPECTRAL IMAGE CLASSIFICATION

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]
(31]

(32]

(33]

[34]

[35]

(36]

(37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

N. Wang, B. Du, and L. Zhang, “An endmember dissimilarity con-
strained non-negative matrix fractorization method for hyperspectral
unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6,
no. 2, pp. 554-569, Apr. 2013.

M. Tipping and C. Bishop, “Probabilistic principal component analysis,”
Aston Univ., Birmingham, U.K., Tech. Rep. NCRG/97/010, Sep. 1997.
L. Ma, M. M. Crawford, and J. Tian, “Local manifold learning-based
k-nearest-neighbor for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 48, no. 11, pp. 4099-4109, Nov. 2010.

D. Zhang, Z. Zhou, and S. Chen, “Non-negative matrix factorization
on Kernels,” in Proc. Pacific Rim Int. Conf. Artif. Intell., Guilin, China,
2006, pp. 404-412.

C. Bachmann, T. Ainsworth, and R. Fusina, “Exploiting manifold
geometry in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 43, no. 3, pp. 441-454, Mar. 2005.

X. He and P. Niyogi, “Locality preserving projections,” in Proc. Conf.
Adv. Neural Inf. Process. Syst. (NIPS’03), Vancouver, Canada, 2003, vol.
16, pp. 234-241.

X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving em-
bedding,” in Proc. IEEE Int. Conf. Comput. Vis., 2005, pp. 1208-1213.
H. Lu, K. Plataniotis, and A. Venetsanopoulos, “MPCA: Multilinear
principal component analysis of tensor objects,” IEEE Trans. Neural
Netw., vol. 19, no. 1, pp. 18-39, Jan. 2008.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871-1874, 2008.

J. Bioucas-Dias and M. Figueiredo, “Logistic regression via variable
splitting and augmented Lagrangian tools,” Instituto Superior Técnico,
TULisbon, Lisbon, Portugal, Tech. Rep., 2009.

P. Soille, Morphological Image Analysis. Berlin, Germany: Springer-
Verlag, 1999.

L. Vincent, “Morphological grayscale reconstruction in image analysis,”
IEEE Trans. Image Process., vol. 2, no. 2, pp. 176-201, Apr. 1993.

D. Tuia, F. Pacifici, M. Kanevski, and W. Emery, “Classification of
very high spatial resolution imagery using mathematical morphology and
support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 11, pp. 3866-3879, Nov. 2009.

T. Castaings, B. Waske, J. A. Benediktsson, and J. Chanussot, “On
the influence of feature reduction for the classification of hyperspectral
images based on the extended morphological profile,” Int. J. Remote
Sens., vol. 31, no. 22, pp. 5921-5939, Jul. 2010.

E. J. Breen and R. Jones, “Attribute openings, thinnings and granu-
lometries,” Comp. Vis. Image Understand., vol. 64, no. 3, pp. 377-389,
Nov. 1996.

L. Zhang, X. Huang, B. Huang, and P. Li, “A pixel shape index coupled
with spectral information for classification of high spatial resolution
remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44,
no. 10, pp. 2950-2961, Oct. 2006.

J. F. Cardoso, “High-order contrasts for independent component analy-
sis,” Neural Comput., vol. 11, no. 1, pp. 157-192, Jan. 1999.

D. Lee and H. S. Seung, “Learning the parts of objects by nonnegative
matrix factorization,” Nature, vol. 401, pp. 788=791, Oct. 1999.

L. D. Miao and H. R. Qi, “Endmember extraction from highly mixed
data using minimum volume constrained nonnegative matrix factoriza-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777,
Mar. 2007.

X. Huang and L. Zhang, “A comparative study of spatial approaches
for urban mapping using hyperspectral ROSIS images over Pavia city,
northern of Italy,” Int. J. Remote Sens., vol. 30, no. 12, pp. 3205-3221,
Jan. 2009.

I. K. Fodor, “A survey of dimension reduction techniques,” Lawrence
Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. UCRL-ID-
148494, May 2002.

Factor Analysis [Online]. Available: http://en.wikipedia.org/wiki/Factor_
analysis, accessed on Dec. 05, 2013.

S. Roweis and L. Saul, “Nonlinear dimensionality reduction by lo-
cally linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326,
Dec. 2000.

Z. Long, Q. Du, and N. H. Younan, “Multiscale spectral-spatial hyper-
spectral classification using multilinear PCA and contourlet transform,”
in Proc. 5th IEEE GRSS Workshop Hyperspectral Signal Process. Evol.
Remote Sens., Gainesville, FL, USA, Jun. 2013.

D. Bohning, “Multinomial logistic regression algorithm,” Ann. Inst. Stat.
Math., vol. 44, no. 1, pp. 197-200, Mar. 1992.

M. A. T. Figueiredo, “Adaptive sparseness for supervised learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1150-1159,
Sep. 2003.

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

4667

B. Krishnapuram, L. Carin, and A. Hartemink, “Joint classifier and
feature optimization for cancer diagnosis using gene expression data,”
in Proc. Int. Conf. Res. Comput. Mol. Biol., 2003, pp. 167-175.

B. Krishnapuram, A. Hartemink, L. Carin, and M. Figueiredo, “A
Bayesian approach to joint feature selection and classifier design,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1105-1111,
Sep. 2004.

J. Borges, J. Bioucas-Dias, and A. Marcal, “Fast sparse multinomial
regression applied to hyperspectral data,” in Proc. 3rd Int. Conf. Image
Anal. Recognit. (ICIAR), 2006, pp. 700-709.

J. Li, J. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspectral
image segmentation using multinomial logistic regression with active
learning,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085—
4098, Nov. 2010.

J. Li, J. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmentation
using a new Bayesian approach with active learning,” [EEE Trans.
Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.

X. Huang and L. Zhang, “Comparison of vector stacking, multi-SVMs
fuzzy output, and multi-SVMs voting methods for multiscale VHR urban
mapping,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 2, pp. 261-265,
Apr. 2010.

J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspectral
image classification based on a Markov random field and sparse multi-
nomial logistic regression,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 2009, pp. 111-817-111-820.

B. Song et al., “Remotely sensed image classification using sparse
representations of morphological attribute profiles,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 8, pp. 5122-5136, Aug. 2014.

L. van der Maaten, E. Postma, and J. van den Herik, “Dimensionality
reduction: A comparative review,” Tilburg Univ., Tilburg, The Nether-
lands, Tech. Rep. TiCC-TR 2009-005, 2009.

P. R. Marpu et al., “Classification of hyperspectral data using extended
attribute profiles based on supervised and unsupervised feature extraction
techniques,” Int. J. Image Data Fusion, vol. 3, no. 3, pp. 269-298,
Sep. 2012.

T. Li and C. Ding, “The relationships among various nonnegative matrix
factorization methods for clustering,” in Proc. IEEE Int. Conf. Data
Min., 2006, pp. 362-371.

Xin Huang (M’13-SM’14) received the Ph.D.
degree in photogrammetry and remote sensing from
the State Key Laboratory of Information Engineer-
ing in Surveying, Mapping, and Remote Sensing
(LIESMARS), Wuhan University, Wuhan, China,
in 2009.

Currently, he is a Full Professor with the LIES-
MARS, Wuhan University. He has published more
than 45 peer-reviewed articles in the international
journals. He has frequently served as a Referee of
many international journals for remote sensing. His

research interests include hyperspectral data analysis, high-resolution image
processing, pattern recognition, and remote sensing applications.

Dr. Huang was the recipient of the Top-Ten Academic Star of Wuhan
University in 2009. In 2010, he received the Boeing Award for the best
paper in image analysis and interpretation from the American Society for
Photogrammetry and Remote Sensing, Bethesda, MD, USA. In 2011, he was
the recipient of the New Century Excellent Talents in University from the
Ministry of Education of China, Beijing, China. In 2011, he was recognized
by the IEEE Geoscience and Remote Sensing Society as the Best Reviewer
of IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. In 2012, he was
the recipient of the National Excellent Doctoral Dissertation Award of China.
He was the winner of the IEEE GRSS 2014 data fusion contest. Since 2014,
he serves as an Associate Editor of the IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS.

Xuehua Guan received the B.S. degree in remote
sensing science and technology from Shandong Uni-
versity of Science and Technology, Qingdao, China,
in 2012. She is currently pursuing the M.S. degree
from the State Key Laboratory of Information Engi-
neering in Surveying, Mapping, and Remote Sensing
(LIESMARS), Wuhan University, Wuhan, China.

Her research interests include image infor-
mation extraction and multi/hyperspectral image
classification.



4668

Jon Atli Benediktsson (F’14) received the Cand.
Sci. degree in electrical engineering from the Uni-
versity of Iceland, Reykjavik, and the M.S.E.E. and
Ph.D. degrees in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 1984, 1987,
and 1990, respectively.

He is currently a Pro Rector for Academic Af-
fairs and a Professor of Electrical and Computer
Engineering with the University of Iceland, Reyk-
javik, Iceland. His research interests include re-
mote sensing, biomedical analysis of signals, pattern
recognition, image processing, and signal processing, and he has published
extensively in those fields.

Prof. Benediktsson was the 2011-2012 President of the IEEE Geoscience
and Remote Sensing Society (GRSS) and has been on the GRSS AdCom
since 2000. He was the Editor-in-Chief of the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING (TGRS) from 2003 to 2008 and has
served as an Associate Editor of TGRS, the IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS, and the IEEE Access since 1999, 2003, and 2013. He
is on the Editorial Board of the PROCEEDINGS OF THE IEEE and on the
International Editorial Board of the International Journal of Image and Data
Fusion and was the Chairman of the Steering Committee of IEEE JOURNAL
OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING from 2007 to 2010. He is a Cofounder of the biomedical startup
company Oxymap (www.oxymap.com). He is a Fellow of SPIE. He is a
member of the Association of Chartered Engineers in Iceland (VFI), Societas
Scinetiarum Islandica, and Tau Beta Pi. He received the Stevan J. Kristof
Award from Purdue University in 1991 as an outstanding Graduate Student
in remote sensing. In 1997, he was the recipient of the Icelandic Research
Council’s Outstanding Young Researcher Award, in 2000, he was granted the
IEEE Third Millennium Medal, in 2004, he was a corecipient of the University
of Iceland’s Technology Innovation Award, in 2006, he received the yearly
Research Award from the Engineering Research Institute of the University of
Iceland, and in 2007, he received the Outstanding Service Award from the
IEEE Geoscience and Remote Sensing Society. He was a corecipient of the
2012 IEEE Transactions on Geoscience and Remote Sensing Paper Award,
and in 2013, he was a corecipient of the IEEE GRSS Highest Impact Paper
Award. In 2013, he received the IEEE/VFI Electrical Engineer of the Year
Award.

Liangpei Zhang (M’06-SM’08) received the B.S.
degree in physics from Hunan Normal University,
Changsha, China, the M.S. degree in optics from the
Chinese Academy of Sciences, Xian, China, and the
Ph.D. degree in photogrammetry and remote sensing
from Wuhan University, Wuhan, China, in 1982,
1988, and 1998, respectively.

He is currently the Head of the Remote Sens-
ing Division, State Key Laboratory of Information
Engineering in Surveying, Mapping, and Remote
Sensing, Wuhan University. He is also a Chang-Jiang
Scholar Chair Professor appointed by the Ministry of Education of China,
Beijing, China. He is currently a Principal Scientist for the China State Key
Basic Research Project (2011-2016) appointed by the Ministry of National
Science and Technology of China, Beijing, China, to lead the remote sensing
program in China. He has more than 300 research papers. He is the holder
of five patents. His research interests include hyperspectral remote sensing,
high-resolution remote sensing, image processing, and artificial intelligence.

Dr. Zhang is a Fellow of the Institution of Engineering and Technology, an
Executive Member (Board of Governor) of the China National Committee of
the International Geosphere-Biosphere Programme, and an Executive Member
of the China Society of Image and Graphics. He regularly serves as a Cochair
of the series SPIE Conferences on Multispectral Image Processing and Pattern
Recognition, Conference on Asia Remote Sensing, and many other confer-
ences. He edits several conference proceedings, issues, and Geoinformatics
symposiums. He also serves as an Associate Editor of the International
Journal of Ambient Computing and Intelligence, the International Journal
of Image and Graphics, the International Journal of Digital Multimedia
Broadcasting, the Journal of Geo-Spatial Information Science, the Journal
of Remote Sensing, and the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 12, DECEMBER 2014

Jun Li (M’13) received the B.S. degree in geo-
graphic information systems from Hunan Normal
University, Changsha, China, the M.E. degree in
remote sensing from Peking University, Beijing,
China, and the Ph.D. degree in electrical engineering
from the Instituto de Telecomunicagdes, Instituto
Superior Técnico (IST), Universidade Técnica de
Lisboa, Lisbon, Portugal, in 2004, 2007, and 2011,
respectively.

From 2007 to 2011, she was a Marie Curie Re-
search Fellow with the Departamento de Engenharia
Electrotécnica e de Computadores and the Instituto de Telecomunicagdes,
IST, Universidade Técnica de Lisboa, Lisbon, Portugal, in the framework
of the European Doctorate for Signal Processing (SIGNAL). She has also
been actively involved in the Hyperspectral Imaging Network, a Marie Curie
Research Training Network involving 15 partners in 12 countries and intended
to foster research, training, and cooperation on hyperspectral imaging at
the European level. Since 2011, she has been a Postdoctoral Researcher
with the Hyperspectral Computing Laboratory, Department of Technology
of Computers and Communications, Escuela Politécnica, University of Ex-
tremadura, Céceres, Spain. Her research interests include hyperspectral image
classification and segmentation, spectral unmixing, signal processing, and
remote sensing.

Dr. Li has been a Reviewer of several journals, including the IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, the IEEE GEO-
SCIENCE AND REMOTE SENSING LETTERS, Pattern Recognition, Optical
Engineering, Journal of Applied Remote Sensing, and Inverse Problems and
Imaging. She received the 2012 Best Reviewer Award of the IEEE JOURNAL
OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING.

Antonio Plaza (M’05-SM’07) received the Com-
puter Engineer degree in 1997, the M.Sc. degree in
1999, and the Ph.D. degree in 2002, all in computer
engineering, from the University of Extremadura,
Caceres, Spain.

He is an Associate Professor (with accreditation
for Full Professor) with the Department of Technol-
ogy of Computers and Communications, University
of Extremadura, Badajoz, Spain, where he is the
Head of the Hyperspectral Computing Laboratory
(HyperComp). He was the Coordinator of the Hy-
perspectral Imaging Network, a European project with a total funding of 2.8
MEuro. He has authored more than 400 publications, including 119 JCR
journal papers (71 in IEEE journals), 20 book chapters, and over 240 peer-
reviewed conference proceeding papers (94 in IEEE conferences). He has
guest-edited seven special issues on JCR journals (three in IEEE journals).

Prof. Plaza has been a Chair for the IEEE Workshop on Hyperspectral
Image and Signal Processing: Evolution in Remote Sensing (2011). He is
a recipient of the recognition of Best Reviewers of the IEEE GEOSCIENCE
AND REMOTE SENSING LETTERS (in 2009) and a recipient of the recognition
of Best Reviewers of the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING (in 2010), a journal for which he has served as Associate
Editor in 2007-2012. He is also an Associate Editor for IEEE Access
and was a member of the Editorial Board of the IEEE GEOSCIENCE AND
REMOTE SENSING NEWSLETTER (2011-2012) and the IEEE GEOSCIENCE
AND REMOTE SENSING MAGAZINE (2013). He was also a member of the
steering committee of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED
EARTH OBSERVATIONS AND REMOTE SENSING (2012). He served as the
Director of Education Activities for the IEEE Geoscience and Remote Sensing
Society (GRSS) in 2011-2012 and is currently serving as President of the
Spanish Chapter of IEEE GRSS (since November 2012). He is currently
serving as the Editor-in-Chief of the IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING JOURNAL (since January 2013).




HUANG et al.: MULTIPLE MPs FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Mauro Dalla Mura (S’08-M’11) received the Lau-
rea (B.E.) and Laurea Specialistica (M.E.) degrees in
telecommunication engineering from the University
of Trento, Trento, Italy, in 2005 and 2007, respec-
tively. He received a joint Ph.D. degree in informa-
tion and communication technologies (Telecommu-
nications Area) from the University of Trento, Italy
and in electrical and computer engineering from the
University of Iceland, Reykjavik, Iceland, in 2011.
In the same year, he was a Research Fellow with the
Fondazione Bruno Kessler, Trento, Italy, conducting
research on computer vision.

He is currently an Assistant Professor with the Grenoble Institute of
Technology (Grenoble INP), Grenoble, France. He is conducting research
at the Grenoble Images Speech Signals and Automatics Laboratory (GIPSA-
Lab), Cedex, France. His research interests include remote sensing, image
processing, and pattern recognition, in particular, mathematical morphology,
classification, and multivariate data analysis.

4669

Dr. Dalla Mura is a Reviewer of the IEEE TRANSACTIONS ON GEO-
SCIENCE AND REMOTE SENSING, the IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS, the IEEE JOURNAL OF SELECTED TOPICS IN EARTH
OBSERVATIONS AND REMOTE SENSING, the IEEE JOURNAL OF SELECTED
TOPICS IN SIGNAL PROCESSING, Pattern Recognition Letters, ISPRS Journal
of Photogrammetry and Remote Sensing, Photogrammetric Engineering, and
Remote Sensing (PE&RS). He is a member of the Geoscience and Remote
Sensing Society (GRSS) and the IEEE GRSS Data Fusion Technical Commit-
tee (DFTC) and Secretary of the IEEE GRSS French Chapter (2013-2016).
He was a Lecturer at the RSSS12—Remote Sensing Summer School 2012
(organized by the IEEE GRSS), Munich, Germany. He was the recipient of the
IEEE GRSS Second Prize in the Student Paper Competition of the 2011 IEEE
International Geoscience and Remote Sensing Symposium 2011 (Vancouver,
CA, July 2011).



