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Abstract—Water is one of the vital components for the
ecological environment, which plays an important role in human
survival and socioeconomic development. Water resources in
urban areas are gradually decreasing due to the rapid urban-
ization, especially in developing countries. Therefore, the precise
extraction and automatic identification of water bodies are of great
significance and urgently required for urban planning. It should
be noted that although some studies have been reported regarding
the water-area extraction, to our knowledge, few papers concern
the identification of urban water types (e.g., rivers, lakes, canals,
and ponds). In this paper, a novel two-level machine-learning
framework is proposed for identifying the water types from urban
high-resolution remote-sensing images. The framework consists
of two interpretation levels: 1) water bodies are extracted at the
pixel level, where the water/shadow/vegetation indexes are con-
sidered and 2) water types are further identified at the object
level, where a set of geometrical and textural features are used.
Both levels employ machine learning for the image interpretation.
The proposed framework is validated using the GeoEye-1 and
WorldView-2 images, over two mega cities in China, i.e., Wuhan
and Shenzhen, respectively. The experimental results show that
the proposed method achieved satisfactory accuracies for both
water extraction [95.4% (Shenzhen), 96.2% (Wuhan)], and water
type classification [94.1% (Shenzhen), 95.9% (Wuhan)] in complex
urban areas.

Index Terms—High resolution, machine learning, object-
oriented, water detection, water extraction, water index.

I. INTRODUCTION

W ATER is one of the most active and essential natu-
ral resources for the urban environments, which plays

a crucial role in human life, social development, and cli-
mate change. However, water resources over urban areas are
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gradually decreasing due to the rapid urbanization, popula-
tion growth, agricultural irrigation, and environmental degrada-
tion [1], [2]. Therefore, it becomes an important task to retrieve
and monitor the urban water information for management and
decision-making of water resources in urban areas.

Remote sensing, as a convenient, rapid, effective, and timely
Earth observation technique, can provide increasing possi-
bilities for information extraction from urban water bodies.
A number of papers have been published concerning water
area extraction from remote-sensing data. In general, the meth-
ods can be divided into two groups: 1) spectral analysis, i.e.,
water information is retrieved by considering its radiometric
characteristics in the multispectral bands and 2) image clas-
sification, i.e., feature extraction and classification techniques
are employed for water-area detection and quantitative analysis.
A literature review for the two groups is provided below.

A. Spectral Analysis

A notable example for the water spectral analysis is the nor-
malized difference water index (NDWI) [3], which is computed
using green and near-infrared (NIR) bands to enhance water
features. However, NDWI cannot eliminate the disturbance of
dark built-up areas, which are mixed with water bodies. To
address this problem, modified NDWI (MNDWI) [4] was pro-
posed by replacing the NIR band used in the NDWI with the
shortwave infrared (SWIR) band to extract water surface while
suppressing the noise from built-up areas. It should be noted
that NDWI and MNDWI are not very appropriate for delin-
eating water bodies from urban high-spatial resolution images
since some urban structures (e.g., shadow, roads, and other dark
objects) also have high response for the two indexes [5]. Feyisa
et al. [6] developed a new automated water extraction index
(AWEI), which can provide a fairly stable threshold value. In
the experiments, AWEI achieved higher accuracies than the
MNDWI and the maximum likelihood classification (MLC).
Color space transformation has been also applied for delineat-
ing water bodies, such as HIS (hue, intensity, saturation) and
HSV (hue, saturation, value) transformation. Jiang et al. [7]
used indexes composition and the HIS transformation to sepa-
rate water bodies from shadows. In the water bodies product of
EU copernicus [8], the inland water was detected by applying
thresholds to normalized difference vegetation index (NDVI),
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NDWI, SWIR reflectance, and the hue component derived from
the HSV transformation. Sun et al. [9] built a water-body
extraction model based on the Munsell HSV transformation,
trying to reduce the errors resulting from shadows. Nguyen [10]
proposed a spectral pattern analysis for water-body extraction
from Landsat 5 TM and SPOT 5 HRG images. It was found that
the spectral pattern analysis was not only effective for detection
of water bodies but also potential for indication of water quality.

B. Image Classification

Image classification based on feature extraction and machine
learning is also an effective approach for water-area extraction
from remote-sensing imagery. In [11], the K-means clustering
as well as a series of processing chain, including edge detec-
tion, thresholding, and image erosion, was used to detect rivers
from satellite images. Decision tree has been employed, accord-
ing to the spectral characteristics of water bodies and other
objects, to extract water surface from TM data [12]. The rule
set method based on the object-oriented technique was used
to extract water-body information from WorldView-2 image
data, by combining spectral, geometric, and textural character-
istics [13]. Adaboost algorithm [14], which was implemented
by constructing a so-called “strong classifier” by training and
integrating a set of “weak classifiers,” was used to improve the
accuracy of water-body extraction. Zhou et al. [15] proposed
an iterative method to extract urban water, through construct-
ing segmented buffers with adaptive length and radius and
introducing spatial consistency for gradually optimizing the
classification. This method was proved as applicable in urban
water extraction from high-resolution remote-sensing imagery.

On the other hand, image classification is also used for
water extraction from SAR data. Mondal et al. [16] used the
MLC for differentiating water areas from other areas from the
TerraSAR-X image in a cloudy river valley region with a high
classification accuracy score (94.92%) obtained. Klemenjak
et al. [17] proposed an automatic method to extract river net-
works from high-resolution SAR data by using mathematical
morphology and support vector machines (SVMs).

By summarizing the existing literature, it can be found that
most of the papers concern the water-area extraction. However,
to our knowledge, few studies refer to the identification of
water-body types over urban areas, e.g., rivers, lakes, ponds,
and canals. It should be noted that different water types have
different effects for urban ecology and environments. Thus, it
is necessary to identify the types of water when establishing the
urban water geographical information database. On the other
hand, in recent years, with the rapid development of the Earth
observation techniques, a lot of high-resolution remotely sensed
data become accessible and they are playing an important role
in various urban-related applications. In this background, the
availability of the high-resolution data makes it possible to fur-
ther extract water-body types by considering the spatial and
semantic information contained in the high-resolution images.

In the context, we propose a novel pixel-object two-level
machine-learning model for identifying the water-body types
from urban high-resolution optical satellite images. The main
contributions of this paper lie in the following two aspects.

1) From the application point of view, extraction of the urban
water types (e.g., rivers, lakes, ponds, and canals) from
high-resolution images is investigated, which has been
rarely studied in the existing literature.

2) From the methodology point of view, a novel pixel-object
two-level machine-learning method is proposed, involv-
ing the water-area detection at the pixel level and the
subsequent water-type classification at the object level.

This paper is organized as follows. Section II introduces
the study areas (Wuhan and Shenzhen) as well as the high-
resolution images used. Section III describes the proposed two-
level machine-learning framework for identifying the urban
water types. In Section IV, the proposed methodology is evalu-
ated with experiments conducted on two high-resolution image
datasets, and discussions and analysis for the results are made.
Finally, discussions and conclusion are presented in Section V
and Section VI, respectively.

II. STUDY AREAS AND DATASETS

Two typical mega cities of China, Shenzhen and Wuhan, are
selected as the test sites in this study. Shenzhen is one of the
several most-developed cities in China. However, its freshwater
resources are very limited, and the ownership of water resources
per capita for Shenzhen is only one-third of the national aver-
age. In general, Shenzhen is a city of shortage of water. The
management and monitoring of water resources are therefore
essential for the urban planning and decision-making. The other
study site, Wuhan City, however, shows a quite different sce-
nario. Wuhan is called the “city on rivers,” which is the largest
inland port on the middle reaches of the Yangtze River. It has
plentiful water resources with a number of various lakes, rivers,
ponds, and canals. Its water surface area covers 25% of the
whole city, and its gross amount of water resources ranks a high
place in China.

In this study, two high-spatial resolution remote-sensing
images are used for water detection and type classification:
GeoEye-1 Wuhan and WorldView-2 Shenzhen. The images, as
well as the corresponding ground truth references, are shown
in Fig. 1. The detailed parameters of the two images are pro-
vided in Table I. The ground truth reference images were
delineated manually from the high-resolution images by care-
ful visual interpretation. A field campaign and the sufficient
prior knowledge for the study sites can guarantee the reli-
ability of the ground truth maps. In a typical Chinese city
landscape, the water-body types refer to lakes, rivers, ponds,
and canals, defined according to the official document from the
Chinese National Administration of Surveying, Mapping and
Geoinformation, within a project framework for the national
geographic information monitoring [18]. The graphic examples
for the four water types are illustrated in Fig. 2.

III. METHODOLOGY

The proposed pixel-object machine-learning framework for
water extraction and classification is shown in Fig. 3. The
water-area extraction is carried out at the pixel level, where a set
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Fig. 1. (a) and (b) are GeoEye-1 Wuhan true-color image and ground truth reference, respectively; (c) and (d) are WorldView-2 Shenzhen true-color image and
ground truth reference, respectively.

of information indexes are used for discriminating water bod-
ies from other land-cover classes. The preliminary result for the
water extraction is then input into the object level, such that the
object-level information processing can focus on the water layer
derived from the pixel level. The object-based processing chain
includes image segmentation, textural and geometrical feature
extraction, and machine learning for identifying various water
types.

A. Pixel-Level for Water Extraction

The basic principle for the water extraction is that the water
areas have large values on the NDWI, but very low response
to the NDVI. However, a big challenge for water extraction
from urban high-resolution imagery is that shadow and water
have very low spectral reflectance in the visible and NIR bands.
Thus, a recently developed morphological shadow index (MSI)
[19] is utilized in this study for reducing the misclassifica-
tion between water and shadow. The combination of the water,

shadow, and vegetation indexes makes it possible to effectively
extract the water areas from urban high-resolution imagery. The
information indexes considered are introduced as follows.

1) Normalized Difference Water Index (NDWI): McFeeters
[3] used the NDWI to delineate open-water features combining
the green (Green) and NIR bands. It can be written as

NDWI =
Green−NIR

Green + NIR
. (1)

2) Normalized Difference Vegetation Index (NDVI) [20]:
NDVI is one of the most widely adopted vegetation indexes,
according to the red radiation absorption and NIR reflectance
of vegetation in the photosynthetic processes. NDVI is defined
as the normalized ratio of the NIR band and red (Red) band

NDVI =
NIR− Red

NIR + Red
. (2)

In this study, it can be also used to indicate the water infor-
mation since water has relatively low NDVI values when there
is no alga or vegetation on the water.
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TABLE I
OVERVIEW OF GEOEYE-1 AND WORLDVIEW-2 DATASETS

3) Morphological Shadow Index (MSI) [19]: MSI is a
recently developed urban shadow index, which is able to auto-
matically extract shadow from urban high-resolution imagery.
It is constructed by describing the spectral–spatial properties of
shadow using a series of morphological operations. The basic
principle is that shadow areas as well as the spatially adjacent
buildings will produce a large local contrast. It is a dual opera-
tor of the morphological building index (MBI) [21]. Buildings
and shadow correspond to the bright and dark components,
respectively, and hence, they are represented using white and
black top-hat transform for the MBI and MSI. MSI can be
calculated by

MSI =

∑

d,s

DMPBTH(d, s)

D × S
(3)

where d and s indicate the direction and length of a linear struc-
turing element (SE), respectively; D and S are the number of
directions and scales for the differential morphological pro-
files (DMPBTH), respectively. MSI is defined as the mean of
the DMPBTH profiles since shadow shows large local contrast
compared to the neighborhoods in various scales and directions.
Consequently, shadow areas have large MSI feature values.
Readers can refer to [19] and [21] for details about MBI and
MSI.

Combination of the aforementioned information indexes
(NDWI, NDVI, and MSI) makes it possible to effectively
extract water areas from urban high-resolution images. A
graphic example is demonstrated in Fig. 4, where (a) shows an
urban lake landscape. A major difficulty for extracting water
surface from urban images is to remove shadow, especially for
the high-resolution images. To this aim, the NDWI [Fig. 4(b)],
NDVI [Fig. 4(c)], and MSI [Fig. 4(d)] are used to highlight
the water, vegetation, and shadow, respectively, and to enlarge
the difference between water and other urban structures. In
Fig. 4(d), it can be seen that the MSI is able to indicate the
shadow from both buildings and trees. With these information
indexes, the water, shadow, and vegetation can be conveniently
extracted by manually setting a set of thresholds (i.e., 0.24 for
NDWI, 0.09 for NDVI, and 0 for MSI) [Fig. 4(e)].

In this study, in order to sufficiently exploit the informa-
tion indexes for urban water extraction, a set of machine-
learning algorithms are employed to interpret these indexes.
The machine-learning algorithms considered include both state-
of-the-art and newly proposed ones, which are briefly described
in Section III-C. Subsequently, the result obtained by the
machine learning at the pixel level is used as the preliminary
water layer and input into the object level for further identifying
the water-body types.

B. Object Level for Identification of Water-Body Types

Although the combination of the water, vegetation, and
shadow indexes can effectively extract water surface, it may
fail to discriminate between various water types. This phe-
nomenon can be clearly observed in Fig. 5, where the feature
values of the NDWI, NDVI, and MSI for different water types
are highly overlapped. This observation can also be supported
by the Jeffreys–Matusita (J–M) distance [22], which is used
to quantify the degree of the overlap among different types
of water bodies, as shown in the Table II. J–M distance is a
widely used quantitative measure of the separability between
two classes, ranging from 0 to 2. A high value indicates a bet-
ter separability. From the table, it can be seen that it is very
difficult to discriminate between various kinds of water areas
by only considering the NDVI, NDWI, and MSI features at the
pixel level, since the J–M values are very low. Consequently,
we propose to consider the geometrical and textural attributes
of each water body at the object level for the type identification.
The proposed processing flow includes the following steps.

Step 1) Segmentation: The water areas extracted from the
pixel level (i.e., the preliminary result) are used to
generate a set of water segments. The segmenta-
tion can be simply carried out by a region-growing
method, where the water pixels derived from the
preliminary result are viewed as seed points and
the neighboring water pixels are gradually included
into the segment.

Step 2) Feature extraction: The object-based features con-
sidered in this study refer to:
a) Area: It indicates the number of the pixels con-

stituting the image object. In an urban image,
the lakes and rivers always have large area
values.

b) Shape index: It is defined as the border length of
an image object divided by four times the square
root of its area. It can also be understood as the
ratio between the border length of an object and
the perimeter of the square with the same area.
It describes the smoothness of an image-object
border

S =
B

4
√
A

(4)

where B is the border length of the image
object, and A indicates the area of the object.

c) Density: It can be calculated as the ratio
of the object’s total number of pixels to its
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Fig. 2. Graphic examples for the four water types: rivers, ponds, lakes, and canals, as well as the ground sampling and the key words for their characteristics.

Fig. 3. Proposed water-body extraction and type classification framework.

approximated radius. It helps to delineate the
compactness of an object, i.e., the object has
large density if its shape is close to a regular
square. An elongated structure corresponds to
small-density value. The formula of the density
can be written as

D =

√
A

1 +
√

V ar(X) + V ar(Y )
(5)

where A is the number of pixels forming the
image object, and V ar(X) and V ar(Y ) indi-
cate the variance of X and Y coordinates of all
pixels that constitute the object, respectively.

d) Length-to-width ratio: It represents the ratio of
the length and width of the bounding box for
an image object. Usually, the length-to-width
ratio of canals is higher than lakes and ponds
on account of their straight and narrow shape.

e) Homogeneity: The homogeneity, derived from
the gray-level cooccurrence matrix (GLCM)
[23], is used to describe the textural feature of
an object. It is considered in this study since the
texture of water bodies is often more homoge-
neous than shadow.

A series of statistics derived from the samples
of GeoEye-1 Wuhan test site are shown in Fig. 6,
where the distributions of the feature values at the
object level accord well with the previous anal-
ysis. A satisfactory separability between various
types of water bodies is obtained at the object
level. Please note that besides the four water types,
shadow objects are considered, since the residual
shadow that was misclassified as water at the pixel
level can be corrected by the object-based features.
It is a merit of the proposed two-level pixel-object
framework.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 4. Example showing urban water-body extraction based on NDWI, NDVI, and MSI. (a) Example image. (b), (c), and (d) Shows the NDWI, NDVI, and MSI
feature images, respectively. (e) Water extraction result derived from the information indexes based on a set of manually selected threshold values.

Fig. 5. Statistics of the information indexes for the four water types. Each box plot shows the location of the 25, 50, and 75 percentiles using horizontal lines.
The two whiskers cover the 99.3 percentile of the data, and the red “+” is the outlier outside the two whiskers. The plots are based on the statistics of the samples
derived from the GeoEye-1 Wuhan test site.

TABLE II
J–M DISTANCE BETWEEN DIFFERENT WATER TYPES USING NDVI,

NDWI, AND MSI

Step 3) Machine learning for classification of water types:
A set of machine-learning methods are employed
to interpret the object-based textural and geometri-
cal features for identifying the type of each water
object. At the object level, the water segments are
classified into four types (rivers, lakes, ponds, and
canals) as well as the shadow areas, since some
shadow pixels that were wrongly identified as water
are also input into the object level. As aforemen-
tioned, the false alarms of the shadow can be further
suppressed by taking the geometrical features into
account at the object level.

Step 4) Outputs: Based on the feature extraction and
machine learning, the refined water bodies as well
as their types can be obtained as the final products.

C. Machine Learning

The machine-learning methods play an important part in this
study, for the preliminary water extraction at the pixel level
and the further water-type identification at the object level. It
should be noted that the motivation of this paper is not to inves-
tigate the performance of the machine-learning algorithms, but
to construct a novel pixel-object two-level machine-learning
framework, with due consideration of the requirements for
water-area extraction and the water-type classification. The
machine-learning methods considered in this paper refer to a
series of state-of-the-art algorithms, some of which are recently
developed for remote-sensing image classification. A brief
description is given below.

1) Support Vector Machine (SVM): SVM is a popular
machine-learning algorithm based on the statistical learning
theory and the structural risk minimization (SRM) principle
[24]. SVM has a high generalization performance and is suit-
able for the image classification with high dimension feature
space and small training sample set [25].

2) Extreme Learning Machine (ELM): ELM is a single-
hidden layer feedforward neural network (SLFN), which is
a fast and effective machine-learning method with high gen-
eralization performance [26]. In contrast to other learning
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Fig. 6. Feature distributions of the four water types at the object level. Each box plot shows the location of the 25, 50, and 75 percentiles using horizontal
lines. The two whiskers cover the 99.3 percentile of the data, and the red ‘ +’ is the outlier outside the two whiskers. The plots are based on the statistics
of the samples selected from the GeoEye-1 Wuhan test site, where 8, 17, 6, 3, and 11 objects for rivers, ponds, lakes, canals, and shadow, respectively, are
considered.

algorithms, an advantage of the ELM is that it does not need
extra parameters and it is not time-consuming. ELM is a rel-
atively new classifier and has been introduced for processing
remote-sensing images very recently [27].

3) Decision Tree: Decision tree is one of the most com-
monly used machine-learning methods for supervised classi-
fication [28], [29], which is composed of a series of interior
nodes and leaf nodes, corresponding to the input and target vari-
ables, respectively. Many decision-tree algorithms have been
developed for data mining, such as ID3 [30], C4.5 [31], and
CART [32].

4) Random Forest (RF): RF is an ensemble machine-
learning method based on the principle that a subset of variables
are selected randomly to construct a collection of decision trees
and the output of the trees with the most votes is regarded as the
result. It is able to improve the prediction accuracy of a simple
decision-tree [33].

5) Tree Bagger (TB) [34]: The principle of the TB is very
similar to the RF. It also creates an ensemble of bagged decision
trees, but without the selection of a random subset of the
features for each tree compared to the RF.

6) Logistic Regression via Variable Splitting and Augmented
Lagrangian (LORSAL): LORSAL is a recently introduced
classification algorithm [35], and it has been successfully
applied to the hyperspectral image classification [36]. Its basic
principle is to learn the class posterior probability distributions
using a multinomial logistic regression (MLR) model [37].
LORSAL has the advantage of dealing with the large datasets
with multiple features, which accords well with the case in this
study.

IV. EXPERIMENTS AND ANALYSIS

A. Parameter Setting

The parameters for both pixel and object levels in the exper-
iments are provided below.

1) Pixel Level: Feature extraction: The scale parameters
for the MSI are set to Smin = 3 and Smax = 15 with the interval
Δs = 3. Smin = 3 and Smax = 15 are determined according

TABLE III
MEAN AND STANDARD DEVIATION OF THE KAPPA COEFFICIENT OF THE

WATER EXTRACTION FOR GEOEYE-1 WUHAN DATASET

to the minimal and maximum dimension of a shadow, respec-
tively, by considering the spatial resolution of the images. Δs
is set to 3, following our previous studies [19], [21].

Machine learning: The number of the training samples of
water and nonwater is set to 1000 pixels, respectively, generated
randomly for ten times from the ground truth references. A
five-fold cross-validation is used to seek the optimal parame-
ters. The mean and standard deviation of the Kappa coefficients
are reported as the water detection and classification accuracy.
The parameter setting for various machine-learning methods is
summarized as follows.

1) SVM is run with both linear and RBF kernels. For the
RBF kernel, the ranges for optimization of the RBF
kernel width and the penalty coefficient are (0.0001,
0.001, 0.01, 0.1, 1, 10) and (0.1, 1, 10, 100, 500, 1000),
respectively.

2) The parameter of RF mainly refers to the number of trees.
In this study, a set of values (10, 20, 50, 100, 500, 1000)
is defined for parameter selection.

3) The key parameter for the ELM is the number of neurons
in the hidden layer. Its range for the parameter selection
is (10, 20, 50, 100, 500, 1000).

4) The LORSAL classifier refers to the sparseness parameter
lambda. The optimal value is selected from (0.001 0.01
0.1 1 10 50).
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Fig. 7. Results of water extraction for GeoEye-1 Wuhan dataset: (a) ground truth; (b) RBF–SVM; (c) CART; and (d) RF.

TABLE IV
ACCURACIES OF WATER-TYPE IDENTIFICATION FOR GEOEYE-1 WUHAN

DATASET

NA, not available.

2) Object Level: Feature extraction: There are no free
parameters for the object-based feature extraction.

Machine learning: Please note that the training samples used
in this stage are based on objects rather than pixels. In this
regard, the number of the training samples is quite limited,
especially when only considering the objects of water. Thus,
the cross-validation strategy is not used at the object level,
and the final results are reported with the optimal param-
eters that achieve the best classification for the water-type
classification.

B. Results for the GeoEye-1 Wuhan

1) Water Extraction (Pixel Level): The accuracies for the
water extraction are provided in Table III, where the training
samples were randomly selected from the reference by ten
times, and the mean and standard deviation of the Kappa
coefficient are recorded for accuracy assessment. The Kappa
coefficient is employed since it is insensitive to the imbal-
ance for the number of pixels between the water and nonwater
classes.

From the table, it can be seen that SVM outperformed other
machine-learning methods in terms of the accuracy of the water

TABLE V
MEAN AND STANDARD DEVIATION OF THE KAPPA COEFFICIENTS OF THE

WATER EXTRACTION FOR WORDVIEW-2 SHENZHEN DATASET

extraction. In addition, RBF–SVM achieves the highest value of
the Kappa with the lowest standard deviation, which shows its
stability for the classification. It can be noted that the RF and
the TB also yield satisfactory results, which are slightly lower
than the SVM. The CART and ELM seem to be unsuitable
for water extraction in the pixel level since they give relatively
small Kappa score and high standard deviation.

Some maps for the water-area extraction are shown in
Fig. 7 as a visual inspection. In order to show the details of
the results, three local areas are selected for comparison of
three machine-learning methods: RBF–SVM [Fig. 7(b)], CART
[Fig. 7(c)], and RF [Fig. 7(d)]. By comparing the results of
the machine-learning methods and the ground truth, it can be
found that most of the misclassifications are related to the urban
shadow. In particular, the CART method is subject to more false
alarms for shadow, and its result shows pepper-and-salt effect,
which is not observed in the RBF–SVM and RF.

2) Water-Type Classification (Object Level): The accuracy
scores for the water-type identification are provided in Table IV.
Please note that the classification experiment will not be gener-
ated multiple times by randomly selecting the training samples,
since the number of the object-based training samples is very
limited for each water class. In this case, the number of the
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Fig. 8. Results of water-type identification for GeoEye-1 Wuhan dataset: (a) ground truth; (b) RBF–SVM; (c) C4.5; and (d) RF.

training samples (in objects) is 8, 17, 6, 3, and 11 for rivers,
ponds, lakes, canals, and shadow, respectively. With respect
to the accuracy assessment, in addition to the Kappa coeffi-
cient, F-measure [38] is also used for accuracy assessment.
F-measure is a combination of the producer’s and user’s accu-
racy (PA and UA), i.e., a balance between the omission and
commission errors. It is defined as

F -measure =

(
1 + β2

) ∗ PA ∗UA
β2 ∗ PA+UA

(6)

with β = 1 in this paper.
Table V shows interesting results. In general, the decision-

tree methods (including C4.5, CART, TB, and RF) as well as
the linear-SVM achieve satisfactory accuracies in terms of the
Kappa coefficients, outperforming the complicated machine-
learning algorithms, e.g., nonlinear SVM, ELM, and LORSAL.
It reveals that the object-based geometrical and textural features
are adequate for identifying different water types. A simple
combination, e.g., a decision-tree or linear decision, is there-
fore effective for the classification. This phenomenon can be
supported by the statistics in Fig. 6, where the object-based
features we selected are able to discriminate between different
water types. In this case, the nonlinear learning (RBF–SVM),
multilevel neural network (ELM), and sparse representation
(LORSAL) may lead to overfitting of the classification and
make the classification problem complicated.

Some classification maps are shown in Fig. 8 for a visual
inspection. It can be seen that the result of the RBF–SVM is not
satisfactory with many misclassifications observed [Fig. 8(b)].
By comparing Fig. 8(c) and (d), it can be found that some small
errors between ponds and lakes occur in the C4.5, but do not
exist for the RF. Similar phenomenon can also be observed
between canals and rivers, which are wrongly classified by the
C4.5 but are correct for the RF. These observations are consis-
tent with the class-specific accuracies in Table VI, where the

TABLE VI
ACCURACIES OF WATER-TYPE IDENTIFICATION FOR WORLDVIEW-2

SHENZHEN DATASET

classification accuracies of various water types achieved by RF
are among the best.

C. Results for the WorldView-2 Shenzhen

1) Water Extraction (Pixel Level): The accuracies of water
extraction for the WorldView-2 Shenzhen dataset are provided
in Table V. Generally speaking, the water extraction accura-
cies in Shenzhen are much lower than Wuhan, which can be
attributed to the fact that the amount of the shadow in the
WorldView-2 Shenzhen image is more than Wuhan, since most
of the study area for Shenzhen is in the city center, while the
Wuhan test image covers a lot of rural areas and urban fringes.
Therefore, a large number of misclassifications exist between
water and shadow in the Shenzhen dataset (Fig. 9), which sig-
nificantly reduce the water extraction accuracy. However, the
performance for the machine-learning methods is similar to the
Wuhan experiment. The SVM methods, as well as the RF and
TB, achieve relatively satisfactory results.

Some maps of water-body extraction are presented in Fig. 9
for a visual comparison. It can be seen that the high accu-
racy of the water detection obtained by the SVM and RF is
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Fig. 9. Results of water-body extraction for WorldView-2 Shenzhen dataset: (a) ground truth; (b) RBF–SVM; (c) C4.5; and (d) RF.

consistent with their visual results, where the false alarms and
misclassifications are smaller than other methods.

2) Water-Type Identification (Object Level): The accu-
racies of water body-type identification for WorldView-2
Shenzhen dataset are presented in Table VI. The number
of training samples in objects is 5, 13, 2, 8, and 19 for
rivers, ponds, lakes, canals, and shadow, respectively. The
performances of the machine-learning methods show similar
conclusions to the Wuhan test site. The decision-tree algo-
rithms achieve significantly higher water classification accu-
racies compared to SVM, ELM, and LORSAL. In particular,
the RF and TB give the optimal results in terms of both Kappa
coefficients and class-specific accuracies (F-measure scores). In
this study area, in general, the decision-tree methods also out-
perform kernel learning (RBF–SVM), neural networks (ELM),
and the sparse classifier (LORSAL). It is revealed that the
decision-tree classifiers are more suitable for the object-based
water-type classification than other machine-learning methods,
which have more complicated decision rules.

Some classification maps of water-type classification are pre-
sented in Fig. 10 for a visual inspection. It can be observed
that the RF method indeed provides more accurate water-type
classification, as the examples shown in the figure.

V. DISCUSSIONS

In this section, some important issues related to the pro-
posed two-level pixel-object framework for water extraction
and water-type classification are discussed.

The influence for the number of training samples is discussed
for the water-detection experiment. Fig. 11 shows the relation-
ship between the accuracy (average Kappa values and standard
deviation) and the processing time (s), with different sizes of
training samples. It can be seen that increasing the number of
training samples can lead to higher accuracy scores with lower
standard deviation, but, at the same time, its computation time
also increases. Specifically, 100, 200, 400, 800, 1000, and 2000
samples (in pixels) per class (i.e., water and nonwater) are con-
sidered, and the average Kappa coefficient and the standard
deviation are reported in Fig. 12 for various machine-learning
methods. It can be seen that the trend is similar to the results
shown in Tables III and V, where 1000 pixels per class were
used for training. The SVM classifiers, both linear and kernel-
based, as well as the TB and RF are among the most accurate
ones, regardless of the number of training samples. The influ-
ence of the number of training samples at the object level is
not discussed here since the available number of samples at the
object level is much smaller than the pixel level.

Another interesting phenomenon for the proposed frame-
work is the difference of the water-detection accuracy between
pixel and object levels (Fig. 13). It can be clearly seen that,
in most cases, the accuracy of the water extraction at the
pixel level has been significantly improved by the object-level
processing. It is not surprising since a series of object-based
geometrical and textural features are further utilized to remove
the false alarms of shadow. It is implied that an accurate water
extraction from remotely sensed imagery, especially for the
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Fig. 10. Results of water body-type identification for WorldView-2 Shenzhen dataset: (a) ground truth; (b) RBF–SVM; (c) C4.5; and (d) RF.

Fig. 11. Accuracy scores (average Kappa value and standard deviation) and the
training time with different number of training samples.

high-resolution data, should be relied on both spectral and
spatial information.

At the pixel level, both NDVI and NDWI have been uti-
lized to delineate preliminary water map. Fig. 14 illustrates
the scatter plot of NDVI and NDWI, where 1000 samples per
class (i.e., water and nonwater) are considered. It can be seen
that an individual index can separate water and nonwater to

Fig. 12. Average and standard deviation of the accuracies for water detec-
tion for GeoEye-1 Wuhan and WorldView-2 Shenzhen datasets when different
training samples are used for machine learning.

some degree, and combination of NDVI and NDWI can slightly
facilitate the extraction of water areas. In reality, there is infor-
mation redundancy in using both NDVI and NDWI due to a
high correlation between them. Hence, it is not essential to
include both indexes in water extraction.
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Fig. 13. Comparison of the accuracies between pixel-based and object-based
water extractions for (a) Wuhan and (b) Shenzhen dataset, respectively.

Fig. 14. Scatter plot of NDVI and NDWI, where 1000 samples per class (i.e.,
water and nonwater) are generated randomly from GeoEye-1 Wuhan dataset.

The imaging conditions (e.g., sun angle, sensor view angle,
and cloud cover) also influence the accuracy of water detection.
Specifically, in terms of sensor view angle, a small off-nadir

view angle is desirable for the water extraction and classifica-
tion in urban areas. For instance, a tall building or tower in an
image with a large off-nadir angle can shade the adjacent water
surface. However, a low off-nadir angle can reduce the geo-
metrical deformation of water areas. In fact, the nadir angles
of images used in this study are not optimum, but the impact
on the water detection is relatively small considering that the
off-nadir angles for the two datasets (about 20◦) are small.

The phenomenon of adjacency effect on the water is a com-
mon problem due to the atmospheric scattering [39]. Thus,
the spectral reflectance of water bodies can be affected to
some extent, especially in the boundary areas of water close
to the bright features in urban areas. Santer and Schmechtig
[40] discussed the adjacency effect on water surfaces by using
the primary scattering approximation. The adjacency effect of
the images used in the study is relatively small, and actu-
ally, the object-level feature description and classification can
reduce the spectral difference and the adjacency effect for the
water bodies.

In this paper, the thresholds for the information indexes (i.e.,
NDWI and NDVI) play an important role in the pixel-based
water extraction. In general, a threshold can be selected by trial
and error or using the peak-valley method of histogram segmen-
tation [41]. At the pixel level, considering that the thresholding
values are relatively stable in the experiments, the manually
selected thresholds are used for the NDWI, NDVI, and MSI,
for delineating water, vegetation, and shadow, respectively.
Although the threshold scheme for water extraction can lead
to a few uncertainties and errors, they can be effectively sup-
pressed at the object level by considering the geometrical and
textural attributes.

Last but not least, the training samples are usually delineated
manually by visual inspection, but the sampling method is time-
consuming. Thus, in future, further work will refer to more
smart sampling strategy for the water extraction and classifica-
tion. For instance, the active learning [42] or semi-supervised
learning [43] techniques can be taken into account for opti-
mizing the sampling strategy and saving the cost of manual
labeling.

VI. CONCLUSION

In this paper, a novel pixel-object double-level machine-
learning framework is proposed for water extraction and water-
type identification from optical high-resolution remotely sensed
imagery over urban areas. The effectiveness of the proposed
strategy has been validated based on GeoEye-1 Wuhan and
WorldView-2 Shenzhen, both of which are typical Chinese
mega cities which have different characteristics of urban water
resources.

The notable advantages and the new results of the proposed
method are summarized as follows.

1) A set of information indexes, NDVI, NDWI, MSI, are
used in the pixel level for extracting water areas. The
consideration of the shadow index (MSI) is able to signif-
icantly reduce the false alarms of shadow (Fig. 4), which
is a main source of errors for urban water extraction from
high-resolution imagery.
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2) The water information obtained by the pixel level is used
as a preliminary result for the subsequent water-type
identification at the object level, where a series of object-
based geometrical and textural features are employed for
discrimination between various water types. Our experi-
ments show that the object-based features, such as area
length-to-width ratio, shape index, density, and homo-
geneity, are essential for water-type classification.

3) The dual-level configuration of the proposed framework
is able to integrate the information extraction from both
pixel and object levels, for water detection and classifica-
tion, respectively. The water extraction at the pixel level
can be viewed as a preprocessing of the subsequent clas-
sification, which actually provides a mask for filtering out
most of other urban structures. Another effective setting
for the proposed framework is that, at the object level, the
shadow is also viewed as a class to further correct the mis-
classifications between water and shadow derived from
the pixel level. Experimental results (Fig. 13) show that
this processing is effective for removing the false alarms
of shadow by considering the object-oriented features.

4) A series of machine-learning algorithms are adopted at
both pixel and object levels for water detection and clas-
sification, respectively. These methods include both state-
of-the-art, e.g., SVM, RF, decision-tree, and new methods
which are recently introduced into remote sensing, e.g.,
ELM and LORSAL. Therefore, it can be said that the con-
clusion obtained in this paper is reasonable and meaning-
ful. An interesting phenomenon is that the decision-tree
methods, especially for the RF and TB, achieved the opti-
mal results in terms of both quantitative accuracy scores
and visual inspection, particularly significantly outper-
forming SVM and ELM. A sensible explanation is that the
object-based geometrical and textural features are rather
effective for discriminating between different water types
(Figs. 8 and 10). Consequently, the decision-tree meth-
ods, which directly consider the original features or their
combinations for classification, gave better results than
the SVM, ELM, and LORSAL, which are based on more
complex machine-learning mechanism.

The proposed pixel-object dual-level framework has the
potential for water detection and type identification, which are
essential parameters for urban water management and moni-
toring. In future, we plan to apply the proposed framework in
other urban areas, and further automate the water information
extraction.
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