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A dynamic texture (DT) refers to a sequence of images that exhibit spatial and temporal regularities. The
modeling of DTs plays an important role in many video-related vision tasks, where the main difficulty
lies in fact how to simultaneously depict the spatial and temporal aspects of DTs. While unlike the
modeling of DTs, tremendous achievements have been recently reported on static texture modeling.

texture features via an ensemble SVM scheme, and bypassing the difficulties of simultaneously spatio-
temporal description of DTs. More precisely, firstly, by considering a 3-dimensional DT video as a stack 2-
dimensional static textures, we exploit the spatial texture features of single frame to combine different
aspects of spatial structures, followed by randomly selecting several frames of the DT video in the time
augmentation process. Secondly, in order to incorporate temporal information, the naive linear dynamic
system (LDS) model is used to extract dynamics of DTs in temporal domain. Finally, we aggregate these
spatial and temporal cues via an ensemble SVM architecture. We have experimented not only on several
common dynamic texture datasets, but also on two challenging dynamic scene datasets. The results
show that the proposed scheme achieves the state-of-the-art performances on the recognition of
dynamic textures and dynamic scenes. Moreover, our approach offers a simple and general way to
aggregate any spatial and temporal features into the task of dynamic texture recognition.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

A dynamic texture (DT) is considered as a sequence of images
of moving scenes that exhibit certain stochastic stationary prop-
erties, by the first introduction of the concept in [1]. Traditionally,
textures are spatially repetitive visual patterns with stochastic
mechanism in the microscopic view but presenting periodicity at
the macroscopic scale, though it is difficult to make a strict defi-
nition of textures. When referring to dynamic or temporal text-
ure, the notion of self-similarity consisting in conventional image
texture of 2-dimensional (2D) plane is extended to the spatio-
temporal domain [2] which is viewed as 3-dimensional (3D)
volume. DTs present spatial and temporal regularity, some type of
homogeneity both in space and time [3], and they appear in many
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,
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. Huang).
natural physical phenomena such as falling rain, flowing rivers,
and blowing foliage. Dynamic texture recognition (DTR) amounts
to interpreting and understanding what dynamic scene elements
displayed in video contents and classifying dynamic textures into
meaningful semantic categories. The significance of dynamic tex-
tures description and recognition is relevant to a wide range of
complex video processing and understanding tasks, such as ani-
mation scene modeling, content based video retrieval and anom-
aly detection in video surveillance.

1.1. Problem statement

The research of dynamic texture primitively stems from phy-
sics, where the technique of particle image velocimetry (PIV) [4]
generates the sequences of visible flow by injecting particles to
show the fluid motion that can be considered as dynamic textures.
Hereafter, the analysis of dynamic texture is inspired a lot by
physics to build the rigid mathematical model for motion patterns.
However, the tasks in computer vision and physics are quite dif-
ferent from each other. The goal of dynamic texture recognition is
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Fig. 2. The first 3 dimensions of spatial Gabor texture feature of DTs, which forms
good shape clusters inter-class. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this paper.)
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to assign category labels to the given dynamic texture examples.
By far, most of existing investigations have concentrated on
simultaneously modeling the spatial and temporal patterns to
construct unified spatio-temporal descriptions for DTR. However,
underlying physics of temporal or motion patterns are too com-
plicated or very little is understood of them. Roughly speaking,
there are three main obstacles in constructing a unified spatio-
temporal approach by treating a DT sequence as a 3D volume:

� Difficulties arise when simultaneously modeling the spatial and
temporal patterns to form the unified spatio-temporal descrip-
tion, subject to the requirement of rigorous mathematical or
physical derivation. Motivated by the motion-based features,
optical flow [5–10] computes frame-to-frame motion estima-
tion, but the assumptions of brightness constancy and local
smoothness are sometimes undesired for dynamic textures, not
mentioning the chaotic dynamics in DT.

� Data-dependent feature extraction limits the generalization to
wider dynamic texture classes. Many physics-based spatio-
temporal approaches, e.g. [11], derive models from the generat-
ing process of specific dynamic textures, which leads to data-
dependent feature extraction.

� How the spatial appearance and underlying dynamics jointly
perform in the recognition is still an open question. Whether
much of the recognition performance is highly tied to the
spatial appearance or the underlying dynamics remains to be
investigated.

Toward this end, the necessity of modeling the integrated
spatio-temporal descriptors by simultaneously incorporating spa-
tial and temporal patterns remains questioned in DTR. Can we
aggregate complementary information from separated spatial and
temporal features to accomplish the task of DTR? In other words, we
prefer to use a simple scheme which merely needs to combine
spatial and temporal features regardless of the complicated
mechanism in the interaction of appearance and dynamics.

1.2. Motivation and objective

Primarily, we note the fact that: Given an example of dynamic
textures, one can easily classify it into certain class, even without
knowing the dynamics but just with several single frames. For
instance, it is easy to discriminate sea waves, bubbling fountain
and flapping foliage by virtue of single image frame, as illustrated
in Fig. 1. It can be explained that in such cases the spatial
appearance conveys sufficient discriminative information, which
contributes more than motion patterns in recognition. It is sig-
nificant to construct the feature space of research object in
recognition tasks. Intuitively, if spatial texture features can be used
to well recognize DTs, they should be separable in the feature
space. To roughly verify this point, we select 100 successive frames
from each DT video sample, then calculate the 2D Gabor features
of each frame, plotting each frame as a dot in the first 3 dimen-
sions of the feature space. As shown in Fig. 2, different colors
correspond to different DT examples and the color of these dots
Fig. 1. Given examples of dynamic textures, one can easily classify them into cer-
tain classes, by just with single frame even without knowing the dynamics.
varying from dark to shallow indicates different frames in time
sequence. As expected, spatial texture features form distinguish-
able good shape clusters and demonstrate a strong power for
recognition.

Then it is natural to quest how to make use of spatial texture
analysis for dynamic texture recognition, especially, when there are
tremendous achievements on spatial texture analysis in the past
decades. For example, descriptors such as LBP [12], Gabor [13], Gist
[14], ScatNet [15] and SCOP [16,17] are available to handle pro-
blems of texture or scene recognition. Since there are so many off-
the-shelf powerful algorithms for texture images, considering the
difficulties in developing unified spatio-temporal descriptors of
DTs, we turn to incorporating these spatial features in our DTR
approach. According to [18], motion provides informative cues
about the scene. For instance, chaotic traffic and smooth traffic are
much similar in their static appearance, where the motion pat-
terns can be utilized to distinguish them between disordered
movement and regular flow.

Motivated by these, we intend to integrate static appearance
features with motion patterns to form complementary description
for dynamic textures. More precisely, we separately process spatial
and temporal clues of dynamic textures and aggregate these com-
ponents in an overall framework. Spatial texture features extracted
from dynamic textures frame-by-frame are first combined via an
ensemble SVM algorithm to effectively fuse different kinds of
individual features, then are incorporated with simple dynamic
feature to capture the motion patterns. For augmentation in
temporal domain, we randomly select several independent frames
during the period of video to pick up temporal alignment. We
want to achieve two simple goals:

� First, we intend to propose a simple scheme which is very easy
or even naive to adapt to different data, and try to maintain
consistency of recognition work between static and dynamic
textures.

� Second, such a basic process via aggregation in spatial features
and augmentation in time can serve as a good baseline to justify
the use of more advanced or more sophisticated spatio-tem-
poral architectures for dynamic texture recognition.

We have also explored an extension of attempt on dynamic
scene recognition for further verification. “Dynamic scene” refers
to a place where an action or event occurs with time, i.e., scene
elements exhibit spatial displacement over time, consisting of
objects that motion elements as foreground and non-motion
patterns as background (e.g. burning fire in forest and rotating
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windmill on the farm). Dynamic texture is restricted to a single
relatively uniformly structured region, whereas several inner-
related regions of different types appear in dynamic scenes.
Thus, dynamic scene recognition encounters bigger challenges
than that dynamic texture recognition does.

1.3. Related work

In recent years, tremendous investigations in the literature
have been devoted to the characterization and recognition of
dynamic texture.

A popular trend of research focus on simultaneously modeling
the spatial and temporal patterns to construct efficient spatio-
temporal descriptions for DTR. Early investigations on dynamic
texture modeling include the work of Doretto et al. [19], which
jointly exploited the spatial and temporal regularities of dynamic
textures by using a linear dynamical system (LDS) model. In the
past decade, following this work, many variants have been pro-
posed, see e.g. [20–23]. Xia et al. [23] model textures with Gaus-
sian processes for either static or dynamic, which is restricted to
space–time stationary textures yet. Such model-based methods
[24–28] often explicitly model the statistical generative process
and then classify different DTs based on the values of the asso-
ciated model parameters. The LDS is a statistical generative model
which jointly learns the appearance and dynamics of dynamic
textures, but the restriction of first-order Markov property and
linearity assumption in LDS model makes it powerless to describe
complex dynamic textures with cluttered background.

Observing that most of these existing investigations have
concentrated on simultaneously modeling the spatial and tem-
poral patterns to construct spatio-temporal descriptions for DTR, a
few work studied the dynamic or spatial patterns of dynamic
textures separately, except Crivelli et al. [3] who mainly reported
the modeling of motion aspects by mixed-state Markov random
field. Shroff et al. [18] characterized motion at a global level by
using dynamic attributes with chaotic invariants, not requiring
localization or tracking of motion elements, but without specific
assumptions on the underlying mapping function compared to
LDS models. They fused the global spatial GIST feature and the
dynamic chaotic invariants into a single feature vector, named by
ChaosþGIST, which ignored the different distribution of spatial
and temporal cues.

Another type of methods simplifies the modeling of dynamics
by equally treating DT in spatial and temporal domain, to extract
the features of 2D cross profiles along three orthogonal x-, y- and
t-axes in 3D DT volume. For instance, Zhao et al. [29–31] extended
local binary pattern (LBP) to the 3D volume by computing LBP of a
DT sequence in three orthogonal planes, constructing local binary
patterns from three orthogonal planes (LBP-TOP). Wavelet-based
multi-fractal spectrum (WMFS) [32] method uses the wavelet-
based spatial-frequency analysis in multi-scale pyramids to build a
descriptor for both static and dynamic textures. They extended the
WMFS descriptor from 2D static texture to 3D dynamic texture by
concatenating the WMFS for each 2D slice along x, y and t three
axes. However, these methods may bring in redundant and noisy
information due to the lack of logical explanation in extracting
static texture features for 2D slice along the x- and y-axes.

Based on the spacetime oriented energies (SOE), each dynamic
texture pattern is represented as a measurement of histogram that
indicates the distribution of a particular set of 3D orientation
structures in spacetime, captured by a bank of spatiotemporal
filters [33–35]. In the later work, Feichtenhofer et al. [36]
aggregated complementary information from separate spatial
and temporal orientation measurements in spacetime pyramids
via random forest classifier. Inspired by deep learning, the Bags
of Spacetime Energies (BoSE) system [37] computes densely
extracted local oriented spacetime energies using local linear
coding (LLC) [38], subsequently pooled by adaptive dynmax-
pooling. While SOE-based approaches have demonstrated pro-
mise on dynamic scene recognition, their application to classifying
the dynamic textures' patterns has been shown to perform poorly
[33].

1.4. Contributions

In this paper, we propose an aggregation-based approach
which simplifies the description of DTs, seeking a way for static
texture analysis methods to be utilized in DTR. The major con-
tributions of this paper are as follows:

� First, we develop a DTR approach by aggregating spatial and
temporal features based on the ensemble SVMs multiclassifier
system. In this way, we bypass the difficulties in simultaneously
considering spatial appearance and dynamics as unified spatio-
temporal description, yet our approach achieves the state-of-
the-art recognition performance.

� Second, we investigate the discriminative capacity of features
aggregation to accurately capture the semantic categories
information of dynamic texture. In other words, just aggregat-
ing off-the-shelf spatial texture features provides an alternative
perspective to deal with DTR, which could be considered
as a valuable baseline for more advanced or more sophist-
icated spatio-temporal approaches in dynamic texture reco-
gnition tasks.

To evaluate the proposed approach, we perform experiments
on benchmark dynamic texture datasets and compare with the
state-of-the-art methods. There is also an extensional experiment
in the dynamic scene datasets to further verify the proposed
method.

The remaining parts of the paper are organized as follows:
Section 2 introduces the proposed spatial and temporal features
aggregation approach, and features being adopted are also men-
tioned. Section 3 shows an experiment-based evaluation of the
proposed approach in contrast with available DTR methods.
Finally, conclusions are provided in Section 4.
2. Methodology

Given a set of N DT samples V ¼ fV1;…;Vn;…;VNg, the task of
DTR is to assign a class label cAf1;…;Cg to each sample Vn, where
C is the number of dynamic texture classes. Moreover, each sample
Vn is in fact a sequence of L images Vn ¼ fIðnÞ1 ;…; IðnÞℓ ;…; IðnÞL g.
(Observing that different DT samples may contain a different
number of frames of images, we let L be the smallest number of
frames contained by each sample Vn in the whole V.) Let the ℓ-th
frame, IðnÞℓ , of the sample Vn be described by a set of K spatial
texture features F ðnÞℓ ¼ ½FðnÞℓ;k�Kk ¼ 1, by

81rkrK ; F ðnÞℓ;k ¼ f k○I
ðnÞ
ℓ ; ð1Þ

where fk is a static texture feature extractor, e.g. LBP [12], Gabor
[13], Gist [14], ScatNet [15] and SCOP [16,17]. Meanwhile, we use a
naive dynamic feature DðnÞ, e.g. LDS, to depict each sample Vn. Thus,
DTR amounts to estimate the class posterior probability PðcjVnÞ
for each sample Vn, with respect to the features fF ðnÞ1 ;…; F ðnÞℓ ;…;

FðnÞL ;DðnÞg.
In this section, we first illustrate the overall framework for

aggregating such features for estimating probability PðcjVnÞ for
DTR, and then briefly introduce the spatial features and linear
dynamical system (LDS) model adopted in the proposed approach.
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2.1. Ensemble scheme for aggregating spatial and temporal features

Given the L frames of a DT video Vn, one may analogically solve
the problem of dynamic texture recognition by multi-frame static
image recognition. Furthermore, due to the self-similarities among
image sequences, there is high repeatability in overall slices of 2D
images constituting a video displaying textures or scenes, which
indicates that several frames may capture sufficient spatial
appearance information for representing the whole sample for
recognition. Hence, we first propose to use only M random frames
of a DT sample Vn, with 1rMrL, to build a discriminative feature
for Vn, by aggregating its spatial texture features fF ðnÞ1 ;…; F ðnÞm ;…;

F ðnÞM g while with regardless of the motion pattern.

2.1.1. Aggregating spatial features via ensemble SVMs
In order to aggregate different types of spatial features, we

propose to use an ensemble method. Ensemble methods are
learning algorithms that construct a set of classifiers and often
used for efficiently combining classifiers [39]. Therefore, ensemble
learning is also called committee-based learning or learning
multiple classifier systems (MCS) [40]. Early researches in image
recognition have shown that combining multiple descriptors is
very useful to improve classification performance [41,42]. The
naive solution to combination is that different descriptors are
combined into a single vector. But a possible problem of creating
one large input vector for a machine learning classifier, such as
support vector machine (SVM), is that the input vector becomes of
very large dimensionality, which may lead to overfitting and
hinder generalization performance [43]. Furthermore, it is worth
mentioning that, generally, the computational cost of constructing
an ensemble is not much larger than creating a single learner [40].
Recently, ensemble methods have been used for efficiently com-
bining classifiers. Support vector machine (SVM) as the so-called
base classifier to construct multiple classifier systems (MCS), such
a MCS based on SVM, is a very powerful way to combine multiple
descriptors in ensemble methods [44]. SVM focuses on optimizing
a single processing step, i.e., the fitting of the presumably optimal
separating hyperplane [45], while MCS relies on an ideally positive
influence of a combined decision derived from several suboptimal
yet sometimes computationally simple outputs. Toward this end, it
seems desirable to combine SVM and MCS in a complementary
approach.

Thus, we first learn the class posterior probability function PFk

ðcj �Þ with respect to the k-th feature descriptor of the m-th frame
of sample Vn by an SVM classifier. As the different SVM classifiers
work in different feature spaces, we propose to use product rule to
build on the final output decision in the late fusion ensemble
architecture, according to [46,44]. Therefore, the output joint class
posterior probability Pðcj IðnÞm Þ given the K different spatial features
of the m-th frame of sample Vn is

8c; Pðcj IðnÞm Þ ¼ PðcjF ðnÞm Þ ¼ ∏
K

k ¼ 1
PFk ðcjF ðnÞm;kÞ; ð2Þ

Then, given that image sequences of the same DT sample show
a large extent of similarity, we average these class posterior
probabilities of the randomly selected M image frames to get an
overall evaluation of the class probability. Thus, the output class
posterior probability P cj IðnÞ1 ;…; IðnÞm …; IðnÞM

� �
for the M selected

frames of the DT sample Vn is estimated as

8c; P cj IðnÞ1 ;…; IðnÞm …; IðnÞM

� �
¼ 1
M

XM
m ¼ 1

PIðcj IðnÞm Þ ð3Þ
8c; P cj IðnÞ1 ;…; IðnÞm …; IðnÞM

� �
¼ 1
M

XM
m ¼ 1

∏
K

k ¼ 1
PFk ðcjF ðnÞm;kÞ: ð4Þ

where PFk ðcj �Þ's are learned by SVM classifiers.

2.1.2. Aggregating dynamic features
In addition to the spatial appearance, the naive linear dyna-

mical system (LDS) model is also employed to extract temporal
features in DTs. Herein we also learn the class probability function
PDðcj �Þ over the LDS dynamic feature D with an SVM classifier.

In order to aggregate the complementary spatial and temporal
information, we assume that the spatial and temporal features are
independent and multiply the two terms:

8c; P cjVnð Þ ¼ P cj IðnÞ1 ;…; IðnÞm …; IðnÞM

� �
� PD cjDðnÞ

� �
; ð5Þ

8c; P cjVnð Þ ¼ 1
M

XM
m ¼ 1

∏
K

k ¼ 1
PFk ðcjF ðnÞm;kÞ

 !
� PD cjDðnÞ

� �
: ð6Þ

Then the final predicted class label of the input DT sample Vn is
determined by the majority vote with the largest probability in the
C classes:

ĉðVnÞ ¼ arg max
cA f1;…;Cg

XM
m ¼ 1

∏
K

k ¼ 1
PFk ðcjF ðnÞm;kÞ

 !
� PD cjDðnÞ

� �
: ð7Þ

The overall flowchart of our approach is illustrated in Fig. 3.

2.2. Spatial features

A good feature for recognition should get the most effic-
ient characteristics that preserve the intra-class invariance while
capture the inter-class discriminative information of images.
Although, so far, there is no single feature that can produce a
universal solution for all images, a variety of features provide
different aspects of discriminative information in images and may
help to depict different structures of images. Combining multiple
features that focus on extracting different types of patterns can
make up complementary visual information of semantic descrip-
tion. Nevertheless, not all the arbitrary aggregation of features
makes sense. In order to get a wise combination, the ensemble
methods should comply with some criteria such as diversity,
independence, decentralization and aggregation [47]. Based on
these ensemble criteria, we select several kinds of features from
different aspects of discriminative information description. Con-
ventional efficient static texture features such as LBP [12] and
Gabor [48] are used for simple and regular texture patterns
extraction. For describing geometrical and high-order static tex-
ture information, shape-based texture descriptor SCOPs [17] and
deep network-based feature ScatNet [15] are selected for complex
or cluttered textures. For depicting scene-level information, we
also select GIST descriptor as a holistic image feature. Moreover, in
order to make use of chromatic information both for texture and
scene, we propose to utilize the discriminative color descriptor
[49].

2.2.1. Local Binary Patterns [12]
The basic Local Binary Patterns (LBP) [12] operator is a gray-

scale invariant texture primitive statistic based on the measure-
ment of local image contrasts. It has obtained good performance in
the classification of various kinds of textures. For each pixel in an
image, a binary code is calculated by thresholding its neighbor-
hood with the value of the center pixel. LBP computes the joint
distribution of the gray levels of PðP41Þ pixels in a local



Fig. 3. The proposed dynamic texture recognition method by aggregating spatial and temporal features.
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neighborhood of texture image:

LBPP;R ¼
XP�1

p ¼ 0

signðgp�gcÞ2p with signðgÞ ¼
1; gZ0
0; go0

(
ð8Þ

where gc corresponds to the gray value of the center pixel and gp
with ðp¼ 0;…; P�1Þ corresponds to the gray values of its P local
neighborhood pixels equally spaced on a circle of radius R; ðR40Þ
that form a circularly symmetric neighbor set. The sign(x) is a sign
function. Finally, a histogram is created to collect up the occur-
rences of different binary patterns.

2.2.2. Gabor filter responses
Based on the important discovery by Hubel and Wiesel in the

early 1960s [50], the neurons of the primary visual cortex respond
to lines or edges of a certain orientation in different positions of
the visual field. The simple cells of the visual cortex of mammalian
brains are best modeled as a family of self-similar 2D Gabor filters.
As a local band-pass filter with the conjoint space–frequency
domain [48] for image analysis, 2D Gabor filters have both the
multi-resolution and multi-orientation properties to measure
texture features. Generally speaking, one texture image is con-
volved with a set of Gabor filters of different preferred orientations
and spatial frequencies, resulting in filter responses to form a
feature vector field that is for further applications [13].

A family of Gabor functions [13,51] can be defined as a product
of two terms:

8ðx; yÞAΩ; gλ;θ;φðx; yÞ ¼ e�ðx02 þγ2y02Þ=σ2 � cos 2π
x0

λ
þφ

� �
ð9Þ

where x0 ¼ x cos θþy sinθ; y0 ¼ �x sinθþy cosθ. The first term is
a Gaussian envelope function that restricts the filter in the spatial
domain. A cosine carrier function varies the frequency of the
modulating wave and the angle parameter θA ½0;2πÞ describes the
spatial orientation of the filter.
2.2.3. GIST scene descriptors [14]
GIST is a computational model of the recognition of real world

scenes that bypasses the segmentation and the processing of
individual objects or regions [14]. As a holistic image feature of
scene recognition, GIST is based on a very low dimensional
representation of the scene, which can be reliably estimated using
spectral and coarsely localized information via frequency analysis.
Like Gabor filters, scene descriptors have also proven very useful
for texture analysis [52], so features of this kind are also
included here.

2.2.4. Shape-based Co-occurrence Patterns [17]
Shape Co-occurrence Patterns (SCOPs) [17] proposed a flexible

shape-based texture analysis framework by investigating the co-
occurrence patterns of shapes. It follows the work of the shape-
based invariant texture analysis (SITA) method [16], which relies
on morphological operations to obtain a tree of explicit shapes.
More precisely, a texture is decomposed into a tree of shapes (the
topographical map) relying on a fast level set transformation
(FLST) [53], where each shape is associated with some attributes.
The shape-based elements of the topographical map provide a
local representation of the image, with which we can analyze the
local textons of images. SITA [16] collects the shapes and describes
the texture by a histogram of individual attributes. In [17], a set of
co-occurrence patterns of shapes is learned from texture images
by clustering algorithm (e.g. K-means). Taking the learnt co-
occurrence patterns of shapes as visual words, a bag-of-words
model is finally established to describe a texture. SCOP demon-
strated superior performance both on the multiple texture dataset
and the complex scene dataset.

2.2.5. Deep network-based features [15]
Motivated by the deep neural networks (DNNs), Bruna and

Mallat [15] proposed a prefixed cascaded wavelet transform con-
volutions with non-linear modulus and averaging operators,
which is called wavelet scattering networks (ScatNet). ScatNet
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constructed a cascade of invariants about rotation, translation and
scaling, which have demonstrated superior performance on static
texture recognition. ScatNet is implemented by a deep convolution
network with wavelets filters and modulus non-linearities [54,55].

Given an image, locally invariant translation and rotation
coefficients are first computed by averaging the image x with a
rotation invariant low pass filter. The high frequencies covariant to
the action of a group GAR2 are recovered by convolution with
high pass wavelet filters ψ, followed by a modulus operator to
make it more insensitive to translations.

2.2.6. Chromatic information [49]
Chromatic information also contains rich information for tex-

ture or scene recognition [56]. Discriminative color descriptors
[49] partition color values into clusters based on their dis-
criminative power in a classification problem while preserving the
photometric invariance. By taking an information theoretic appr-
oach named as Divisive Information-Theoretic Clustering (DITC)
algorithm [57], the clustering of color description has the objective
to minimize the decrease of mutual information of the final
representation. A universal color vocabulary to represent the real-
world is built by joining several objects and scene training sets
together. As a consequence of universality, there is no need to
learn a new color representation for every new dataset and one
can just apply the universal color representation to our problem.
We follow the standard bag-of-words pipeline to construct color
description by using the Fisher vectors (FV) coding method [58].
Finally, to represent an image we form a color descriptor of length
of 500 dimensions by means of PCA dimension reduction after FV
coding.

2.3. Temporal features

In addition to the spatial appearance, the linear dynamical
system (LDS) model is also employed to extract temporal features
in DTs, which depicts dynamic systems as second-order stationary
stochastic processes [19]. LDS is a statistical generative model that
captures the input and output of dynamical system by a set of
model parameters. The model can be written as

xðtþ1Þ ¼ AxðtÞþwðtÞ; wðtÞ �N ð0;RÞ; ð10Þ

IðtÞ ¼ CxðtÞþvðtÞ; vðtÞ �N ð0;Q Þ; ð11Þ
where x(t) is the hidden state vector, I(t) is the observation vector,
i.e., the image frame at each instant of time t; w(t) and v(t) are
independent and identically distributed (IID) noise components
with normal distribution of zero mean and covariance matrix R
and Q respectively. The parameter A is the state-transition matrix
while Cmodels the observation matrix, learned from the input and
output of the dynamical system. The model parameters can be
estimated by using the singular value decomposition (SVD) of the
data matrix. The LDS features lie in a non-Euclidean space so that
subspace angles are usually used as a similarity metric [59].

Given two DTs, modeled with Mi ¼ ðAi;CiÞ and Mj ¼ ðAj;CjÞ, the
pairwise element kij of the similarity matrix K is calculated as

kij ¼ e�d2M ðMi ;MjÞ ð12Þ
where dMð�; �Þ is the Martin distance [60] for subspace angles. This
similarity matrix can be used for the SVM classifier with pre-
computed kernel mode.
3. Experiments and discussions

In this section, we conduct a series of experiments to verify the
performance of the proposed approach by aggregating spatial and
temporal features. We use two types of databases related to
dynamic texture and dynamic scene. In contrary to the variety of
established image datasets, there is currently lack of video classi-
fication benchmarks because videos are significantly more difficult
to collect, annotate and store [61]. With regard to the specific kind
of videos, constructing a comprehensive database of dynamic
scene is not an easy task, especially for dynamic textures. In this
paper, for dynamic scene recognition, we evaluate the proposed
approach on the benchmark datasets: Maryland “In-The-Wild”
[18] dataset and the YUPENN Dynamic Scenes [34] dataset. UCLA
[1] and DynTex [62] from dynamic texture community are surely
two main dynamic texture databases that are used by almost every
recognition method in the state-of-the-art literatures.

For a fair comparison and being consistent with previous stu-
dies [20,21,29,32,34,36,18], the same experimental setup, leave-
one-out classification procedure, was employed in all our experi-
ments and the average classification accuracy was used for eva-
luations. We utilized the LIBSVM [63] in our experiments, and the
SVM scores are directly used as estimations of the class posterior
probabilities. More precisely, in the LIBSVM option mode, “-b” is
set up to do probability estimation. SVM with RBF kernel is used
by the cross-validation to determine the optimal parameters of C
and g. With regard to the augmentation in time, we randomly
select 1, 5, 10, 15 and 20 frames of images from a given DT video
sample to extract features for each video instance, then use the
ensemble SVM framework to aggregate features for each single
frame as described in Section 2, and these selected frames are
averaged for each DT video. The complementary temporal infor-
mation is combined with spatial features finally to determine the
output class label of DTs. We have tested the influence of ran-
domness in choice of frames on the final results, which demon-
strated that the randomness affected the recognition rates at an
acceptable level, thus we made no further analysis about this in
the experiments.

3.1. Experiments on dynamic texture datasets

3.1.1. Results on UCLA-50 dataset
The UCLA dynamic texture dataset was first introduced to test

the recognition performance of LDS-based methods in [1] and
then widely used for evaluating dynamic texture analysis. It
includes 50 dynamic texture categories, called UCLA-50, each class
with 4 grayscale instances at a frame rate of 15 fps. The original
sequences are carefully cropped as a spatiotemporal volume of size
of 48�48�75, i.e., 75 frames with 48�48 pixels. The 50 classes
are formed by artificially separating semantically equivalent clas-
ses of video shots at different viewpoints or scales into different
categories. Fig. 4 shows several sample frames of DTs from the
UCLA dataset.

The recognition rates of different individual spatial texture
features are shown in Fig. 5. The absence of color descriptor is due
to the fact that the DTs are in grayscale. One can observe that
when the number of randomly selected frames is up to 5, the
recognition rate of using a single spatial feature almost comes up
to 99.0%, which indicates that just several frames can capture
enough discriminative information. To aggregate spatial and tem-
poral features, we choose the spatial LBP and SCOP together with
LDS dynamics, which make up the best combination in ensemble
SVMs and display superiority to individual feature. To further
specify the ensemble results, we demonstrate them in Table 1,
where the performances of using individual LBP, SCOP and LDS are
also presented. Notice that the process of LDS is performed on the
whole DT volume so that it has nothing to do with the number of
frames and the same accuracy value is shown about LDS. The
highest recognition rate achieved is 100.00% when using 20
frames, which is better than the state-of-the-art result 99.75% [32].



Fig. 4. Samples of video sequences from the UCLA dynamic texture database, including windblown plants, fountains, fire and rippling water (from up to down and left to
right).

Table 1
Ensemble results of the combined LBP, SCOP, LDS features and their individual
recognition results on the UCLA dataset.

Number of frames LBP SCOP LDS Ensemble SVMs

1 72.96 35.42 90.70 77.32
5 96.76 97.54 90.70 99.00
10 98.00 99.10 90.70 99.46
15 100.00 99.38 90.70 99.90
20 99.74 100.00 90.70 100.00

Table 2
Comparison of performances for different methods
on the UCLA dataset.

Methods Rate (%)

SOE [33] 81.00
KDT-LDS [20] 97.50
MMDL [21] 99.00
WMFS [32] 99.75
Ours 100:0
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In comparison with the previous studies on this UCLA dataset,
Table 2 presents the classification rates of the state-of-the-art
methods reported in the previous works.

The spatiotemporal oriented energies (SOE) [33] achieved a
classification accuracy of 81.0% on the UCLA dynamic texture
datasets, based on matching histograms distribution of spacetime
orientation structure. The reported best recognition performance
based on LDS model is 97.50% by using the kernel dynamic texture
LDS system (KDT-LDS) [20], while our method shows stronger
discriminative power by integrating spatial features into the LDS.
The maximum margin distance learning (MMDL) [21] learned the
weights to different spatiotemporal dimensions and used a linear
combination of three elementary distances representing DT space
where the dimension of dynamics was also depicted by LDS, which
got a classification rate of 99.0%. Wavelet-based multi-fractal
spectrum (WMFS) [32] used the wavelet-based spatial frequency
analysis in multi-scale pyramids to build a descriptor for both
static and dynamic textures, their reported test on UCLA datasets
reached a recognition rate of 99.75%. In our experiments, we
directly compare our method with the results reported in their
papers, as using the same experimental protocols.

3.1.2. Results on DynTex dataset
Another widely used dataset is the DynTex dynamic texture

database [62]. It is a diverse collection of high-quality and colored
dynamic texture videos where more than 650 sequences are
available. The video sequences have a spatial size of 352�288 and
consist of at least 250 frames with 25 fps. In order to provide
DynTex for use of recognition, different sub-datasets with manual
annotation for each DT have been compiled and labeled. One of
the largest sub-datasets is the Gamma dataset which is composed
of 264 dynamic textures divided into 10 classes: Flowers(29), Sea
(38), Naked trees(25), Foliage(35), Escalator(7), Calm water(30),
Flags(31), Grass(23), Traffic(9), and Fountains(37). Here the number
in parenthesis represents the amount of DT samples in each class.
Examples of DynTex are shown in Fig. 6. The content of videos in
the dataset contains not only dynamic texture regions but also
surrounding background which makes the DTs less homogeneous.
In addition, the amount of samples in different classes has number
bias. Several classes have few samples, e.g. 7–9 video sequences in
the classes of Escalator and Traffic, but the number of samples in
the largest class reaches 38. These issues lead to challenges in
adopting DynTex for testing.

Due to the disturbance and ambiguity of DynTex database,
there are multiple subversions of this mother database and it has
been reorganized into different smaller and customized datasets.
The 10-class Gamma dataset of DynTex, named DynTex-10 for
short, is the largest one with a diversity of classes and samples,
whose annotations are specified by the data provider. To the best
of our knowledge, DynTex-10 has not been tested by any DT ana-
lysis method so far.

Different reorganizations of the original DynTex dataset by
previous methods prevent a direct quantitative comparison betw-
een our method and the state-of-the-arts. The classification
accuracy of a 3-class DynTex-3 by joint segmentation and cate-
gorization proposed by Ravichandran et al. [64] is 72.5%. Motion
textures represented by MRF model [3] provided an overall clas-
sification rate of 90.7% while testing on a 10-class subset of DynTex
with only 3 samples in each class. Zhao et al. [29] also tested LBP-
TOP on a subset of DynTex, which includes only 4 classes and each
class is derived from a DT by dividing it into 10 sub-sequences. To
some extent, these manipulations on data decreased the difficulty
of recognition and they obtained an accuracy of 97.14%.

In this paper, we propose to test our approach on the whole
DynTex, and the recognition results of different individual spatial
texture features including color descriptor are shown in Fig. 7. For
Dyntex, we combine LBP, SCOP and color features together with
LDS dynamics in ensemble SVM. As presented in Table 3, LBP, SCOP
and color achieved the recognition rate 77.50%, 90.30% and 78.40%
respectively for 1 frame, as well as an accuracy of 86.80% for LDS,
while the ensemble SVMs can reach 99.50%. As reported by [65],
3D Gabor filters with low speeds achieved better results than high
speeds for the DynTex database, giving the evidence that the
DynTex is indeed composed of DTs with low motion patterns.
From the perspective about appearance of the DT, low motion
patterns mean great similarities between image frames. In agree-
ment with this fact, our experimental result also shows that there



Fig. 6. Examples of video sequences from the DynTex dynamic texture database.

Table 3
Recognition performances achieved by using individual and ensemble results of the
LBP, SCOP, LDS features on the DynTex-10 dataset.

Number of frames LBP SCOP Color LDS Ensemble SVMs

Fig. 5. The recognition rates against number of frames on the UCLA dynamic texture dataset. Ensemble SVMs represent the result of combined LBP, SCOP and LDS features.
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is no promotion accompanied by the increase of number of frames,
as shown in Fig. 7 and Table 3. Another explanation is that
dynamic texture in DynTex exhibit huge intra-class variations in
the background and only a small amount of common foreground
area, i.e., the dynamic texture itself.
1 77.50 90.30 78.40 86.80 99.50
5 84.80 90.50 80.40 86.80 98.00
10 85.50 92.30 80.90 86.80 97.80
15 81.00 90.70 80.90 86.80 97.20
3.2. Experiments on dynamic scenes

3.2.1. Dynamic scene datasets

� Maryland “In-The-Wild” scene dataset: It consists of 13 classes of
dynamic scenes with 10 color videos per class. The average size
of these videos is 308�417�617, i.e., average spatial size of
308�417 pixels with a length about 617 frames. The videos
were collected from Internet websites, e.g. YouTube, which have
large variations in illuminations, frame rates, viewpoints, scales
and resolutions, as well as various degrees of camera-induced
motion (e.g. panning and jitter), taking large intra-class varia-
tions to this dataset. Classes included in this dataset are
Avalanche, Boiling Water, Chaotic Traffic, Forest Fire, Fountain,
Iceberg Collapse, Landslide, Smooth Traffic, Tornado, Volcanic
Eruption, Waterfall, Waves and Whirlpool. Fig. 8 displays several
sample frames from the Maryland dataset.

� YUPENN dataset: It contains 14 dynamic scene classes with 30
color videos for each class. Compared to the Maryland dataset,
this dataset emphasizes scene specific temporal information
over short time durations caused by dynamics of objects and
surfaces without camera-induced motion [34]. Thus it is more
concerned about the task of scene recognition. The average size
of the dataset is 250�370�145. The videos derive from a
variety of sources such as websites and shoots by the suppliers.
These videos also contain variations in image resolutions, frame
rates, scene appearances, scales, illumination conditions and
camera viewpoints, nonetheless most of them are obtained
from a stationary camera. Fig. 9 shows the sample frames from
the YUPENN dataset.
3.2.2. Results on dynamic scene recognition
Based on our experiments, the optimized feature sets are GIST,

SCOP and Color together with the LDS for both the dynamic scene
datasets, where we use a scene descriptor GIST for scene recog-
nition instead of LBP texture feature used in dynamic textures.
Figs. 10 and 11 show that both the dynamic scene datasets achieve
their best recognition results with 15 frames selected, which are
merely small part of the frames in the whole video.

We compare our approach to several previous methods that
have reported excellent performance: GIST with chaotic dynamic
features (Chaos) [18], spatiotemporal oriented energies (SOE) [34],
complementary spacetime orientation (CSO) features [36], and the
Bags of Spacetime Energies (BoSE) system [37]. These studies
almost cover the recently remarkable development on the topic of
dynamic scene recognition. As the comparison presented in
Table 4, for both datasets, the proposed approach outperforms the
previous state-of-the-art methods. Here, our approach obtains an
average accuracy of 78.77% and 96.43% for Maryland and YUPENN
respectively, which makes a further improvement better than
BoSE method [37] that employed trivially detailed dynmax-
pooling strategy and got good accuracies both on the two data-
sets. More than the accuracy, allowing for the simplicity for video
processing, our approach also demonstrates superior performance
on the computation complexity. ChaosþGIST [18] concatenated
GIST feature and the dynamic chaotic invariants into a single
feature vector, and fed them into a classifier, which ignored the
different distribution of spatial and temporal cues. CSO [36]



Fig. 8. Maryland “in-the-wild” dynamic scenes dataset.

Fig. 9. Sample frames of YUPENN dynamic scenes dataset.

Fig. 10. The recognition rates against number of frames on the Maryland dynamic scenes dataset. Ensemble SVMs represent the result of combined GIST, SCOP, Color and LDS
features.

Fig. 7. The recognition rate against number of frames on the DynTex dynamic scenes dataset. Ensemble SVMs represent the result of combined LBP, SCOP, Color and LDS
features.
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Fig. 11. The recognition rates against number of frames on the YUPENN dynamic scenes dataset. Ensemble SVMs represent the result of combined GIST, SCOP, Color and LDS
features.

Table 4
Comparison of performances for different methods on the Maryland and YUPENN
dataset.

Methods Maryland YUPENN

ChaosþGIST [18] 58.46 22.86
SOE [34] 43.08 80.71
CSO [36] 67.69 85.95
BoSE [37] 77.69 96.19
Ours 78.77 96.43
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method used random forest classifiers to combine spatial and tem-
poral orientation measurements in spacetime pyramids, and
obtained acceptable recognition rates of 67.69% and 85.95% on
Maryland and YUPENN respectively. But just extracting the oriented
spacetime structures limited the generalization ability to wider
unconstraint dynamic scenes. Our proposed approach inc-
reases the diversity of spatial and temporal features, leading to a
more flexibility in the aggregation architecture, aggregating various
types of features with better complementary information to achieve
the state-of-the-art performance. Moreover, the proposed approach
is more likely to work stably in the presence of camera motion that
frequently occurs in Maryland dataset, because the SCOP feature is
relied on the topographic map of spatial appearance.
4. Conclusion

In this paper, we have investigated the ultimate recognition
capacity of aggregating spatial and temporal features in dynamic
texture recognition and described a complementary appearance-
and-motion based method, leading to performance surpassing the
state-of-the-art results. The framework of the proposed method
offers a simple way to aggregate any static image analysis method
into the realization of dynamic texture recognition, readily appl-
icable from the spatial domain to the spatiotemporal case. Such
simplicity provides an alternative and yet innovative perspective
to deal with DTR, which could be viewed as a valuable baseline for
studying more advanced appearance and motion models or
spatio-temporal descriptors for recognition tasks. The extensional
experiments on the dynamic scene datasets further verify the
efficiency of the proposed method. Since dynamic texture recog-
nition is a developing and potential research field, where a lot of
work is still to be done, it is of great interest to investigate more
effective schemes for DTR by aggregating spatial and temporal
features. Other aspects include studying the problem how the
spatial appearance and underlying dynamics jointly perform in
dynamic texture recognition, investigating the use of the these
dynamic information in the visual tracking system [66–69].
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