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Abstract—Remote sensing images exhibit significant contrast
and intensity regions and edges, which makes them highly suitable
for using different texture features to properly represent and clas-
sify the objects that they contain. In this paper, we present a new
technique based on multiple morphological component analysis
(MMCA) that exploits multiple textural features for decomposi-
tion of remote sensing images. The proposed MMCA framework
separates a given image into multiple pairs of morphological
components (MCs) based on different textural features, with the
ultimate goal of improving the signal-to-noise level and the data
separability. A distinguishing feature of our proposed approach
is the possibility to retrieve detailed image texture information,
rather than using a single spatial characteristic of the texture. In
this paper, four textural features: content, coarseness, contrast, and
directionality (including horizontal and vertical), are considered for
generating the MCs. In order to evaluate the obtained MCs, we
conduct classification by using both remotely sensed hyperspectral
and polarimetric synthetic aperture radar (SAR) scenes, showing
the capacity of the proposed method to deal with different kinds
of remotely sensed images. The obtained results indicate that the
proposed MMCA framework can lead to very good classification
performances in different analysis scenarios with limited training
samples.

Index Terms—Decomposition, image separation, multinomial
logistic regression (MLR), multiple morphological component
analysis (MMCA), sparse representation, textural features.
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I. INTRODUCTION

EMOTE sensing image classification aims at distinguish-

ing different categories or thematic land-cover classes
using different features [1]. In the classification process, each
image pixel or area is assigned into one of the several the-
matic categories. An important trend in remote sensing image
classification is to incorporate spatial features (e.g., texture or
morphology) to improve the classification results that can be
obtained using the original image data alone [2]. The incorpora-
tion of spatial information is mainly performed as a spatial pre-
processing or postprocessing. In addition, some methods, like
discriminative random fields [3], [4], conditional random fields
[5], [6], and relaxation methods [7], take the spatial information
into account during the classification process. On the one hand,
spatial preprocessing aims at extracting spatial features. Among
the techniques based on this strategy, we can highlight the
use of morphological profiles [8], [9], morphological attribute
profiles [10], morphological component analysis (MCA) [11],
morphological neighborhood filter-based techniques [12], em-
pirical mode decomposition (EMD) [13], [14], wavelet filters
[15], and others [16], [17]. On the other hand, postprocessing-
based approaches generally perform spatial regularization after
classification [18]. For instance, techniques based on partitional
clustering [19], watershed transformations [20], relearning al-
gorithms [21], graph-based classification [22], or super pixel
approaches [23] have been used for this purpose.

Both preprocessing and postprocessing techniques have re-
ceived great attention for remotely sensed image classification
and achieved remarkable performance [24], [25]. The main
difference between these two approaches is that postprocessing
performs spatial regularization based on the classification result
obtained from the original image, i.e., no new features are intro-
duced. In turn, when spatial information is included at the pre-
processing stage, this generally means that a new set of features
is used in order to increase data separability. This has fostered
significant interest in the use of preprocessing techniques. As
preprocessing-based approaches, image-decomposition-based
schemes have been successfully applied to different image
classification tasks [26], [27]. In [11], the authors proposed
an MCA-based image separation approach which constructs a
sparse representation of an image and separates the image into
morphological components (MCs). In [28], sparsity and mor-
phological diversity have emerged as effective features for blind
source separation. In [29], an MCA-based image separation
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method was applied to remotely sensed hyperspectral image
classification, exhibiting very good results in comparison with
postprocessing-based approaches. The basic idea of traditional
MCA-based image separation is to choose two dictionaries,
i.e., content and texture, for the representation of their MCs,
then compute the sparse coefficients over the images that they
are serving, and finally generate the decomposed content and
texture components.

As reported in previous works [11], [29], the effectiveness
of MCA is mainly due to the following issues. On the one
hand, via the considered decomposition approach, new features
(components) are obtained, which can lead to better image
separability. On the other hand, the smoothness component
generally shows better signal-to-noise ratio in comparison with
the original image. However, the traditional MCA decomposes
an image only into content and texture components, in which
new features are fixed (and limited in number), leading to
limited improvements in data exploration. Furthermore, the
MCA-based decomposition neglects the fact that there are many
different kinds of textural features, such as coarseness, direc-
tionality, etc., which may be essential for describing the spatial
information contained in the image. In order to eliminate these
deficiencies and better exploit the spatial textural information
contained in the image, we propose a multiple MCA (MMCA)
approach for image separation that uses an approach similar
to other unsupervised feature extraction approaches that use
both spatial and spectral features [30]. The proposed MMCA
is based on the fact that an image can be described by different
textural features and then can be separated into a smoothness
and a texture component for each textural feature, where five
textural features: content, coarseness, contrast, and direction-
ality (including horizontal and vertical), are considered in this
work. Since remote sensing images exhibit significant contrast
and intensity regions and edges, this makes them highly suitable
for using different texture features to properly represent and
classify the objects that they contain. A sparse representa-
tion method is then adopted for the image separation, where
the dictionaries are randomly generated from the image and
constructed by performing transformations based on a given
textural feature. In order to evaluate the proposed MMCA,
we conduct classification on the extracted features via a
multinomial logistic regression (MLR) based classifier by using
the variable splitting and augmented Lagrangian (LORSAL)
algorithm [31].

The remainder of this paper is organized as follows.
Section II presents the proposed MMCA approach and provides
the details of the considered MMCA-based image separation
technique, as well as the construction of the corresponding
dictionaries for different textural features. Section III discusses
the experimental results intended to test the performance of
the proposed MMCA scheme. The experiments are conducted
using two real hyperspectral data sets, respectively, collected by
the Reflective Optics Spectrographic Imaging System (ROSIS)
over the city of Pavia, Italy, and by the Airborne Visible/
infrared Imaging Spectrometer (AVIRIS) over the Indian Pines
region in Indiana. We also use polarimetric synthetic aperture
radar (SAR) data sets collected by AirSAR over the Flevoland
site in The Netherlands and by the Electromagnetics Institute
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Synthetic Aperture Radar (EMISAR) system over Foulum,
Denmark. Our experiments, focused on a comparison by using
single pairs of MCs, stacked MCs (all of the MCs are stacked
together), linear combinations of the MCs, and multiple kernel
learning, demonstrate that the proposed approach achieves
very good classification results using both hyperspectral and
polarimetric SAR data. Section IV concludes this paper with
some remarks and hints at plausible future research lines.

II. MMCA-BASED IMAGE SEPARATION

In this section, we describe the proposed MMCA-based
image separation scheme. A first relevant issue is the dimen-
sionality of the original data set, particularly in remotely sensed
scenes with high spectral resolution such as hyperspectral
data. In order to reduce the data dimensionality, we use the
minimum noise fraction (MNF) [32] to retain a small number
of components in comparison with the number of bands in
the original data as discussed in Section II-A. The traditional
MCA is outlined in Section II-B. The core of the proposed
MMCA, which aims at decomposing a given image into a
smoothness and a texture component by a given feature, will
be presented in Section II-C. For simplicity, in this paper, we
use the term “‘components” to refer to a new set of uncorrelated
images obtained by certain transformations on the original data,
while we use the term “feature” to denote the spatial textural
feature extracted from each image. Section II-D introduces the
details of image separation based on the considered textural
features. Finally, Section II-E briefly outlines the considered
classification strategy.

A. Dimensionality Reduction

Classification of remotely sensed images can be performed
using all of the original image information. However, for
high-dimensional data sets such as hyperspectral images, it is
common that the data generally live in a subspace of much
lower dimensionality in comparison with the original spectral
space [33], [34]. Following our previous work [29], we propose
to use the MNF [32] to reduce the dimensionality of the
original data. MNF is a widely used and effective technique
for dimensionality reduction which, in comparison to principal
component analysis (PCA) [35], [36], considers the influence
of noise. Here, we use the MNF to retain a number of com-
ponents that contain 99% of the information in the original
data sets. Nevertheless, it should be noted that the main goal
of this step is to reduce the computational cost by reducing
the data dimensionality. At this point, we emphasize that we
have experimentally tested that there is no significant difference
in using the MNF, PCA, or other dimensionality reduction
transformation in our proposed strategy.

B. MCA-Based Image Separation

MCA is a method which allows us to separate features
contained in an image when these features present different
morphological aspects [11]. For an image y € RY, where N
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is the number of pixels in y, and a given textural feature, the
task is to seek the sparsest solution for the problem as follows:

x = argmin ||x]|,

subjectto : y = Ax (D

where x € RE denotes the sparse coefficients of the MC,
A € RVN*K denotes the associated dictionaries, and K denotes
the number of atoms in the dictionary (typically K > N);
I - |l1 is the ¢; norm, which is a tractable convex constrained
optimization problem and can reduce the computational com-
plexity by linear programming. In image textural separation,
we often use MCA to decompose an image into texture and
content components. In the work presented in [29], MCA-based
decomposition is applied for hyperspectral image classification,
where the results obtained were very promising.

C. MMCA-Based Image Separation

For a given image y with N pixels, the objective of MMCA
is to separate it into two components: a smoothness component
ys and a texture component y;, respectively. These components
represent the original image under a linear combination as
follows:

Y=Ystyt+n (2)

where n is the residual in the approximation of the image. The
traditional MCA separates the image y into content y, and
texture y; components. This conventional formulation limits
the exploration of the spatial information contained in remote
sensing images, which are dominated by significant contrast
and intensity regions and edges that can be better captured
by using more than one type of textural features. In order
to fully exploit the spatial texture information contained in
the image, we propose an MMCA scheme to better describe
the textural features. As a result, in addition to the traditional
content feature, we consider four new textural features, namely,
coarseness, contrast, horizontal, and vertical for separation
[37]. Fig. 1 illustrates the proposed MMCA decomposition
scheme, where a toy example with five different classes is
considered. For illustrative purposes, the considered image has
distinct textural features. As can be seen from Fig. 1, the
proposed MMCA includes three main steps. In the first step,
we randomly choose several partitions from image y for the
initialization of the two dictionaries. In the second step, for the
two components (i.e., the smoothness y and its texture y;),
we build two corresponding dictionaries based on certain trans-
formations on the chosen image partitions. Finally, in the last
step, sparse coding is performed to learn the MC coefficients.
At the same time, following [29], the associated dictionaries
are iteratively updated by adopting total variation and hard
threshold regularization. After separation, it is observable that
different textural features lead to specifical components.

For the aforementioned three steps, the most difficult part is
the construction of the dictionaries involved in the second step,
which are essential for the learning of the sparse coefficients.
Therefore, in the following, we provide a detailed description of
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Fig. 1. Proposed MMCA-based image separation scheme for a toy example
with five classes and distinct textural features.

the textural features and their corresponding dictionaries used
in this work.

1) Content Feature: This feature represents the traditional
textural feature used for MCA decomposition, resulting in the
standard cartoon and texture MCs. For the content compo-
nent, which allows for the extraction of anisotropic structures,
smooth curves and edges of different lengths in an image can
be extracted by the curvelet transform [38], [39], biorthogonal
wavelet transform [40], undecimated wavelet transform [41],
and local ridgelet transform [42], among others. Following [29],
for the content component, we use a local curvelet transform
to generate the dictionary from the randomly chosen image
partitions. For the texture component, the local discrete cosine
transform [43] or the Gabor transform [44] can be used to
build a morphological dictionary. Similar to [29], a local Gabor
wavelet transform is adopted to build the dictionary from the
same image partitions.

2) Coarseness Feature: This is a relevant textural feature in
an image. As the bilateral filter is a nonlinear, edge-preserving,
and noise-reducing smoothing filter for images [45], we use
it to build a coarseness dictionary. Bilateral filtering replaces
the intensity value at each pixel in an image with a weighted
average of intensity values from nearby pixels. This weight
can be based on a Gaussian distribution. Crucially, the weights
depend not only on the Euclidean distance between pixels but
also on the radiometric differences (e.g., range differences such
as color intensity or depth distance). This preserves sharp edges
by systematically looping through each pixel and adjusting
weights to the adjacent pixels accordingly. For the opposite
component, we use a wavelet thresholding filter [46] to preserve
small edges and elements while weakening strong edges and
larger elements in the image.
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Fig. 2. Toy example: remote sensing image separation results based on the proposed MMCA framework.

3) Contrast Feature: This feature measures the variance of
the gray-scale distribution, where high and low contrast values
mean fast and slow intensity changes. In [37], the authors
explored four factors for contrast, including the dynamic range
of gray-levels, ratio of black and white areas, sharpness of
edges, and period of repeating patterns. In this paper, we adopt
the anisotropic diffusion (AD) [47] and its modification to
build high-contrast and low-contrast dictionaries. On the one
hand, after applying the AD, the high-contrast regional textures
will be smoothed, while the low-contrast regional texture will
be preserved. On the other hand, by changing the diffusion
coefficient from positive to negative, we can obtain the opposite
behavior for low-contrast regional textures.

4) Directionality Feature: This is a global property which
describes the orientation of the local texture. In [37], direc-
tionality just measures the total degree of directionality, while
the orientation of the texture pattern was not taken into con-
sideration. In this paper, two directional features, i.e., horizon-
tal and vertical, are considered. Again, for each feature, two
dictionaries, one for the smoothness component and another
one for the texture component, are constructed. Here, we use
a wavelet thresholding filter based on the stationary wavelet
transform (SWT) [48] to build the dictionaries. The SWT is a
wavelet transform algorithm designed to overcome the lack of
translation-invariance of the discrete wavelet transform, where
we use an SWT thresholding filter to preserve different high-
frequency subband coefficients so that the texture is decom-
posed into different direction components.

A final aspect to point out is that, although only four textural
features are used for decomposition in this work, other textural
features such as line-likeness, regularity, roughness [37], etc.,
can also be considered according to the image properties.

Nevertheless, in our experiments, we have empirically found
out that the four considered textural features are able to cover
the contextual information and produce good quality compo-
nents, leading to excellent classification accuracies.

In order to illustrate the proposed MMCA framework, we
present a toy experiment for image separation which is based on
a real remote sensing image with 220 x 220 pixels, which is a
portion of the well-known ROSIS Pavia University hyperspec-
tral data set. The separation results are shown in Fig. 2. For each
type of textural feature, we use the aforementioned transforms
to generate the corresponding MCs, where the leftmost column
of Fig. 2 gives the traditional MCA separation results (con-
tent feature) and the other columns correspond to coarseness,
contrast, horizontal, and vertical features. The toy example
demonstrates that our proposed MMCA can bring new addi-
tional feature information when compared to traditional MCA.
For instance, it can be observed in Fig. 2 that the behavior of
the contrast feature, which focuses on the density changes, is
quite different from that of the confent component. A similar
observation can be made for the directionality features, in
which horizontal and vertical features provide complementary
information. Since the objects typically contained in remote
sensing images (e.g., roads and buildings) have distinguish-
able directionality, it is essential to consider more features
than simply the confent, as it is the case with the traditional
MCA method.

D. Image Separation

Let A, and A, be the dictionaries (for the smoothness and
texture components, respectively) for a given textural feature.
Let x, and x; be the sparse coefficients corresponding to the
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smoothness y s and texture y; components, respectively. For a
given image y, we can obtain

we first introduce the parameter settings and notations adopted
in our experiments.

Yy=Y¥styi+n=Ax,+Ax +n 3) 1) In our experiments, only the smoothness components

. . . . idered for classificati . Nine dif-
Notice that, in the original MCA work presented in [29], the ate consicered ToT classtiication purposes. . HHie QU

. . ferent types of results, including one from the origi-
dictionaries A and A; and the components ys and y; are « .

. . nal MNF component denoted as “raw,” five from the
all linked to the content textural feature. One of the main w e ”
) . . . ) textural features denoted as ‘“‘content,” “coarseness,
innovations of our proposed MMCA is its capacity to consider o v e - . w .

. . L. . contrast,” “horizontal,” and “vertical,” and three from
different textural features, i.e., the dictionaries A and A; are . » b x T
. . . . . the combinations of the MCs denoted as “>__,” “V,
constructed according to different image properties, leading to « v _ S
) ) and “CK,,” are reported, where Y. =1/t> .y, ¢
different image components y s and y;. . 5 L
) . . is the number of textural features, here fixed to t = 5,
Following [49], we can obtain ys and y; by solving the . )
. L and y, is the smoothness component of the sth textural
following optimization problem: : _ . .
feature; Vs = [ys,,...,¥s,] is a collection of all of
1 the smoothness components; and CK; follows a com-
~ o~ . 2 . . .
(¥s,¥e) = arg m1n§ ly —ys =yt ||2 posite kernel learning framework [50]. In our work, in
Ya¥t order to simplify the classification complexity, only the
+ M| Tsyslly + X2l Teyell, D) Gaussian radial basis function kernel is considered, and
every kernel is equally weighted. It should be noted
where A\; 1and A2 are the regularllzatlon parameters, Ty = that the “content” textural feature, which represents the
(ATA,) AT and T; = (AT A;) AT are the pseudoinverse traditional MCA approach, is implemented as in [29].
of Ag and A;, which are derived from y; = Asxs and y; = 2) For the parameters involved in the classification, we
A,x;, respectively. Concerning the sparse coding stage, in follow the procedure described in [31]. Although not
this work, problem (4) is solved via the spectral unmixing optimal, this leads to very good performance. Another
by variable splitting and augmented Lagrangian (SUnSAL) reason that we use this suboptimal setting is that the
algorithm [49]. It should be noted that, at each iteration, A objective of our experiment is mainly to evaluate the
and A, are updated by using total variation and hard threshold proposed MMCA scheme via classification.
regularization. 3) For dimensionality reduction, as mentioned in
Section II-A, we use the MNF to retain a number of
E. Classification gomponents t'hé'lt contain 99% of the spectral mfgrmjd—
tion in the original hyperspectral data sets, resulting in
After the MMCA-based image separation has been con- ten MNF components for both the AVIRIS and ROSIS
ducted, we perform classification to evaluate the quality of the images, in which the considered spectral information
obtained components. Generally, the smoothness components is 99.7% and 99.8%, respectively.
have been traditionally used for this purpose. In our particular 4) For the construction of initial dictionaries, in our previ-
case, we use the MLR classifier [31] implemented via the logis- ous work [29], we illustrated that, when the dictionary
tic regression via variable splitting and augmented Lagrangian size increases, the classification improvements are not
(LORSAL) algorithm [31], which has been shown to be an relevant. However, the computational time increases
effective and computationally efficient technique to deal with significantly. Following [29], the size of the image
training sets with limited training samples, regardless of the partition for the considered hyperspectral images is set
number of classes. to 8 x 8 pixels, and we use ten partitions (randomly
chosen from the original image). For the polarimetric
SAR data sets, we perform an investigation on the
III. EXPERIMENTAL RESULTS . . . .
impact of the size and number of dictionaries used for
In this section, we discuss the performance of the proposed classification purposes.
method using different remote sensing images collected by 5) For the parameters involved in the dictionary transform,

hyperspectral and polarimetric SAR instruments. The hyper-
spectral data were collected by the ROSIS and AVIRIS instru-
ments, while the polarimetric SAR data were collected by the
AirSAR and EMISAR instruments. The main objective of our
experiments is to show the ability of the MMCA-based image
separation technique to exploit textural features for classifica-
tion using limited training samples. We will analyze the effec-
tiveness of the proposed framework based on multiple features,
while the selection of an optimized (single) textural feature is
left for future developments of this work. Nevertheless, we will
also present a discussion on individual texture features for the
two considered data sets. Before describing our experiments,

we empirically selected their values after trial and
error. For the curvelet transform, we split the frequency
domain into log,(min(M, N)) — 3) partitions (where
M, N is the size of the image), and the coarse scale is
set as 1. For the local Gabor transform, the frequency is
set as 1/4, and three scale levels with four orientations
are adopted to build the Gabor filter bank. For the bilat-
eral filtering transform, the half-size of the window and
the spatial-domain standard deviation are all set as 3,
and the intensity domain standard deviation is set to 10.
For the AD, the number of iterations is set to 15, and the
gradient modulus threshold is set to 30. Again, although
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Fig. 3. (a) False color composition of the ROSIS Pavia scene. (b) Ground-truth
map containing nine mutually exclusive land-cover classes.

this empirical strategy might be suboptimal, it has been
observed to produce good results in practice.

6) The training set used for the experiments is randomly
selected from the available ground-truth images. The
reported overall accuracies (OAs), average accuracies
(AAs), kappa statistics (), and class individual accu-
racies are obtained after conducting ten independent
Monte Carlo runs with respect to the initial training set
and averaging obtained results.

7) Finally, we would like to emphasize that all of the
experiments were conducted using MATLAB R2013a
in a desktop PC equipped with an Intel Core i7 CPU
(at 3.6 GHz) and 16 GB of RAM.

A. Experiments With Hyperspectral Data

In this section, two hyperspectral data sets are used for
evaluation. The first hyperspectral data set was collected by
the ROSIS optical sensor over the urban area of the University
of Pavia, Italy. The flight was operated by the Deutschen
Zentrum for Luftund Raumfahrt (DLR, the German Aerospace
Agency) in the framework of the HySens project, managed and
sponsored by the European Union. The image size in pixels is
610 x 340, with a very high spatial resolution of 1.3 m per
pixel. The number of data channels in the acquired image is 103
(with a spectral range from 0.43 to 0.86 pm). Fig. 3(a) shows
a false color composite of the image, while Fig. 3(b) shows
the ground-truth map, which contains 42776 samples and 9
ground-truth classes of interest, comprised of urban features,
as well as soil and vegetation features.

The second hyperspectral image used in the experiments
was collected by the AVIRIS sensor over the Indian Pines
region in Northwestern Indiana in 1992. This scene, with a
size of 145 lines by 145 samples, was acquired over a mixed
agricultural/forest area, early in the growing season. The scene
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comprises 202 spectral channels in the wavelength range from
0.4 to 2.5 pum, nominal spectral resolution of 10 nm, moderate
spatial resolution of 20 m by pixel, and 16-b radiometric res-
olution. After an initial screening, several spectral bands were
removed from the data set due to noise and water absorption
phenomena, leaving a total of 164 radiance channels to be used
in the experiments. For illustrative purposes, Fig. 4(a) shows
a false color composition of the AVIRIS Indian Pines scene,
while Fig. 4(b) shows the ground-truth map available for the
scene, displayed in the form of a class assignment for each
labeled pixel, with 16 mutually exclusive ground-truth classes,
in total, 10249 samples. These data, including ground-truth
information, are available online,' a fact which has made this
scene a widely used benchmark for testing the accuracy of
hyperspectral data classification algorithms. This scene con-
stitutes a very challenging classification problem due to the
significant presence of mixed pixels in all available classes and
also because of the unbalanced number available labeled pixels
per class.

1) Experiments With the ROSIS Pavia University Data Set:
In our first experiment with the ROSIS Pavia University data
set, we estimate the quality of the MCs obtained from the
proposed MMCA scheme. Let o, be the noise variance for a
given image, which can be estimated by the fast noise variance
estimation algorithm described in [51]. Fig. 5 shows the noise
variance of the MCs obtained from the first MNF component. It
can be observed that the noise variance is greatly improved for
all of the smoothness components, which are the ones used for
classification.

In the second experiment, we graphically illustrate the data
separability of the MCs obtained from the proposed MMCA
scheme for the ROSIS Pavia data set. Fig. 6 shows the scatter-
plot for classes “asphalt,” “bitumen” and “bare soil” projected
on the first two MNF components. It can be seen that the three
considered classes are better separated in the MC components
than that in the original data set. In order to quantitatively
illustrate the improvement of the class separability, we evaluate
the Bhattacharyya distance [52] between different classes for
the highly mixed regions in the image, as shown in Table I. Take
class 1 (asphalt) and class 2 (bare soil) in the first region as an
example. It can be observed that, since these two classes are
dominated by very different anisotropic structures, the distance
between each other is highly improved in the content space. As
another example, in the second region, class 2 (metal sheets)
and class 3 (shadows) are very close in the original space, while
in the contrast space, the distance is greatly improved. This is
expected, as these two classes present very different intensity
changes. A similar observation can be obtained for most cases,
which can be considered as a good indication that the class
separability is consequently improved.

As another experiment, we also perform a comparison of the
proposed MMCA with other spatial feature extraction methods,
where extended morphological attribute profiles (EMAP) [53]
and EMD [54] are included. We chose EMAP as it is a powerful
tool for spatial feature extraction, where the parameters of

! Available online: http://dynamo.ecn.purdue.edu/bichl/MultiSpec.
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Fig. 4. (a) False color composition of the AVIRIS Indian Pines scene. (b) Ground-truth map containing 16 mutually exclusive land-cover classes (right).
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Fig. 5. Image separation results along with the noise variance o, for the first MNF component of the ROSIS Pavia University data set.
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Fig. 6. Illustration of data separability by projecting the data into the first two MNF components of the ROSIS Pavia University data set. (a) Raw. (b) Content.

(c) Coarseness. (d) Contrast. (e) Horizontal. (f) Vertical.

BHATTACHARY YA DISTANCE BETWEEN DIFFEREE?]éifséES FOR THE ROSIS PAVIA UNIVERSITY DATA SET
Bhattacharyya distance between classes
Region Class name Pair of classes
Raw Content | Coarseness | Contrast | Horizontal | Vertical
| c1: Asphalt cl-c2 0.4289 | 1.1301 0.9070 1.0831 0.7837 0.5179
. N ) c2: bare soil cl-c3 0.3415 | 1.3159 1.1135 1.5505 1.2183 3.2964
c3: bitumen c2-c3 0.2342 1.7884 0.3677 1.4814 1.2446 2.4028
cl: meadows cl-c2 0.1436 | 1.2317 0.2057 1.6674 1.1778 1.9719
c2: metal sheets cl-c3 0.1730 | 1.2275 0.2182 1.6681 1.0875 1.8815
c3: shadows c2-c3 0.0726 | 0.0776 0.0540 0.1139 0.0430 0.1099
cl: Asphalt cl-c2 0.3556 | 0.8190 0.6451 1.9701 0.6579 1.2593
c2: gravel cl-c3 0.5113 | 1.5184 0.8429 1.5472 1.4361 2.0656
c3: shadows c2-c3 0.4104 | 0.9735 0.4129 0.6906 0.7784 0.5772
cl: meadows cl-c2 0.1212 | 0.3487 0.1357 0.3592 0.2047 0.2895
c2: trees cl-c3 0.0854 | 0.4776 0.0964 0.6397 0.2207 0.4476
c3: bricks c2-c3 0.0764 | 0.4077 0.0649 0.1879 0.1210 0.2349

the EMAP are defined according to [53] and [55]. For the
EMD approach, following [14], we choose the bidimensional
EMD [13]. On the one hand, we analyze the impact of the
dimensionality of the MNF components, where Fig. 7(a) shows
the obtained classification results as a function of the number
of MNF components after using 1% of the labeled samples
per class available in the ground-truth image for training and

the remaining samples for testing. Several conclusions can be
obtained from Fig. 7(a). First of all, as expected, the classifi-
cation accuracy increases as the number of MNF components
increases. This is because more information is considered. Fur-
thermore, when the number of MNF components is limited, the
results obtained by MMCA and EMAP are comparable and su-
perior to those obtained by EMD. Finally, as shown in Fig. 7(a),
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Fig. 7. OAs obtained by MMCA, EMAP, and EMD for the ROSIS Pavia University data set: (a) as a function of the number of MNF components and (b) as a

function of the number of training samples per class.

TABLE II
OAS [%], AAS [%], INDIVIDUAL CLASSIFICATION ACCURACY LEVELS, AND k [%] ALONG WITH THE STANDARD DEVIATION OF
TEN MONTE CARLO (MC) RUNS FOR THE PROPOSED MMCA METHOD FOR THE ROSIS PAVIA UNIVERSITY DATA SET, USING
1% OF ALL OF THE AVAILABLE LABELED SAMPLES FOR TRAINING AND THE REST OF THE LABELED SAMPLES FOR TESTING

. #Samples MCs from different textural feature Combinations

el Train(426) Test(42350) Raw Content Coarseness Contrast Horizontal Vertical ZS Vs CKs
Asphalt 66 6565 87.8113.16 96.1142.45 92.57+£2.37 97.1440.79 92.5442.59 92.76£2.50 97.00%1.79 97.80+1.23 97.97£0.89
meadows 186 18463 95.70+1.64 99.8440.31 99.65+0.21 99.504+0.23 99.714+0.40 99.64+0.50 99.8940.22 99.874+0.29 99.8740.32
gravel 21 2078 66.41+5.06 82.86+7.17 72.62+£7.94 82.57+38.07 85.29+8.76 86.8949.04 82.4746.95 89.5517.88 90.25+7.76
trees 31 3033 79.8745.30 90.06+2.42 88.4442.40 86.811+2.17 77.3414.65 75.1245.14 89.8942.10 93.79+2.07 93.56+2.14
metal sheets 13 1332 98.15+0.94 99.2640.58 98.95+1.89 99.27+1.01 99.1740.46 98.08+1.63 99.32+1.54 99.49+1.01 99.49+0.66
bare soil 50 4979 84.70£3.92 99.574+0.42 98.934£0.47 97.60£1.10 100£0.00 99.76£0.51 99.5740.47 99.7540.32 99.72£0.36
bitumen 13 1317 74.98+7.68 96.9742.68 89.7044.75 92.824+6.93 96.42+3.46 97.86+£2.50 97.2142.10 97.824+1.93 97.76£1.80
bricks 37 3645 77.33+3.67 90.64+2.66 83.0945.80 89.87+3.18 91.4342.79 93.79+£2.63 89.724+4.78 96.72£1.79 97.00+£1.83
shadows 9 938 96.15+1.59 88.2445.26 83.5046.67 88.554+6.39 72.641+9.72 75.48+6.06 85.454+6.58 91.34+3.91 90.98+3.38
Average accuracy - - 84.57+1.31 93.734-0.64 89.7140.99 92.68+1.19 90.50+1.25 91.04+1.13 93.3940.53 96.24+0.92 96.29+0.89
Overall accuracy - - 88.47+1.30 96.5410.39 94.2240.50 95.89+0.53 94.8940.42 95.06£0.66 96.54+0.32 98.0640.46 98.12+£0.48
K statistic - - 84.674+1.70 95.414+0.52 92.3240.67 94.5340.70 93.214+0.56 93.454+0.88 95.404+0.43 97.4240.61 97.504+0.63

the proposed MMCA obtains results that are almost the same
when the number of MNF components is greater than 8. Based
on this observation, as discussed in the experimental setting,
we use ten MNF components for classification purposes in the
remaining experiments.

On the other hand, Fig. 7(b) reports the obtained classifica-
tion accuracies as a function of the number of training samples
per class with ten MNF components. It can be observed that,
when the number of training samples is small, the performance
of the proposed MMCA is better than that achieved by the other
tested methods.

In our final set of experiments in this section, we evaluate the
classification performance of the obtained MCs. Two different
experiments are performed. On the one hand, we randomly
choose around 1% of the labeled samples (a total of 426 samples)
from the nine classes in the ground-truth for training and use
the remaining 42 350 labeled samples for testing. Table II re-
ports the obtained OAs, AAs, individual classification accuracy
levels, and ~ statistics, along with the standard deviation of

the ten conducted Monte Carlo runs. It can be observed that
the results obtained from the MCs, which are comparable to
each other, are much better than that obtained from the original
MNF component. Furthermore, the results obtained from the
combinations of the MCs are better than those obtained from
one single type of MCs. This is again expected as more tex-
tural information is included when more textural features are
considered. On the other hand, we evaluate the performance
of the proposed approach under a balanced composition of the
training—test samples, which provides complementary informa-
tion to the one reported in the previous experiment. Around 1%
of the labeled samples (about 48 samples per class) are now ran-
domly chosen for training, and the remaining labeled samples
per class are used for testing. Table III reports the OAs, AAs,
individual classification accuracy levels, and & statistics, where
the standard deviations are also included. Similar observations
can be obtained with regard to those reported for Table II.
This experiment shows that the proposed approach can lead to
very good classification accuracies for problems with limited
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TABLE II1
OAS [%], AAS [%], INDIVIDUAL CLASSIFICATION ACCURACY LEVELS, AND k [%] ALONG WITH THE STANDARD DEVIATION OF TEN MONTE CARLO
(MC) RUNS FOR THE PROPOSED MMCA FOR THE ROSIS PAVIA UNIVERSITY DATA SET, USING A BALANCED DISTRIBUTION WITH 1% OF
THE AVAILABLE LABELED SAMPLES FOR EACH CLASS FOR TRAINING AND THE REST OF THE LABELED SAMPLES FOR TESTING

) #Samples MCs from different textural feature Combinations

e Train(432) Test(42344) Raw Content Coarseness Contrast Horizontal Vertical > s Vs CKs
Asphalt 48 6583 80.2941.41 92424135 86.914-3.06 93.57+£2.41 88.194-2.86 86.1013.45 93.04+2.08 95.18+1.32 9521+1.59
meadows 48 18601 86.78+4.18 98.21+1.59 95.10+2.84 95.5842.92 94.34+2.47 95.8243.19 97.97+2.07 98.63+1.30 98.13+1.68
gravel 48 2051 76.92+5.36 93.2942.51 83.394-2.81 91.90£1.51 93.97+2.18 95.53+2.49 90.63+1.84 96.24+1.78 96.66+1.79
trees 48 3016 89.0313.21 95.0840.95 92.5142.64 93.2442.83 83.4242.31 86.25+3.36 94.38+1.80 96.72+1.06 96.98+1.10
metal sheets 48 1297 99.1940.37 99.65+0.22 99.77£0.27 99.7740.23 99.714+0.22 99.3140.47 99.9240.11 99.87£0.15 99.8940.13
bare soil 48 4981 91.324£2.02 99.67+0.30 99.46+0.51 99.1040.63 99.95+0.06 99.64+0.41 99.79+0.31 99.68+0.53 99.65+0.38
bitumen 48 1282 91.4242.03 99.5540.40 97.11+1.82 97.88+1.38 99.454+0.24 99.45+0.28 99.334+0.74 99.96+0.07 99.954+0.09
bricks 48 3634 76.39+4.68 91.19+2.39 82.5943.03 90.82+2.56 92.19+3.05 95.34+42.79 89.72+3.23 98.20£0.67 98.661+0.66
shadows 48 899 99.0240.49 97.71+1.38 95.93+1.04 98.141+0.93 92.59+1.54 92.96+2.11 96.821+1.62 99.074+0.46 99.1140.48
Average accuracy - - 87.8240.75 96.314+0.29 92.534+0.72 95.55+0.49 93.76+0.57 94.494+0.47 95.734+0.52 98.1740.28 98.254+0.34
Overall accuracy 85.871+1.80 96.4940.57 92.73£1.59 95.1841.46 93.35+1.14 94.18+1.42 96.18+1.04 98.01£0.58 97.88+0.81
K statistic - - 81.6842.15 95.354+0.74 90.45+2.04 93.65+1.88 91.26+1.45 92.34+1.81 94.9441.35 97.374+0.76 97.1941.06

Horizontal (94.68%)

CK, (97.87%)

EMAP(97.20%) EMD(91.87%)

Fig. 8. Classification maps (along with the OAs) obtained by different textural
feature components for the ROSIS Pavia University data set. These maps
correspond to one single experiment in Table II.

training samples, regardless of whether we use a balanced or
unbalanced distribution of training samples across the classes.
Finally, for illustrative purposes, Fig. 8 presents some of the
classification maps obtained by each different textural feature
components.

2) Experiments With the AVIRIS Indian Pines Data Set: In
our first experiment with the AVIRIS Indian Pines data, we
estimate the quality of the MCs obtained from the proposed
MMCA scheme. Fig. 9 shows the noise variance of the MCs
obtained from the first MNF component. It can be observed that
the noise variance is greatly improved for all of the smoothness
components, which are the ones used in the classification.

In the second experiment, we graphically illustrate the data
separability of the MCs obtained from the proposed MMCA
scheme. Fig. 10 shows the scatterplot for classes “corn-no till,”
“soybeans-no till,” and “soybeans-min till” projected on the
first two MNF components. It can be seen that three considered
classes are highly mixed with each other in the original data
set, while in the obtained MCs, similar to that observed in the
ROSIS data, pixels which belong to the same class tend to
be more concentrated, and pixels which do not belong to the
same class tend to be more separated. In order to quantitatively
illustrate the improvement of the class separability, we evaluate
the Bhattacharyya distance [52] between different classes for
the highly mixed regions in the image. Table IV shows the
Bhattacharyya distance between different classes for five dif-
ferent regions. It is clear that the distance between classes is
greatly improved in all cases, which can be considered as an
indication that the class separability is consequently improved.

In a third experiment, around 2% of the labeled samples (a
total of 205 samples) are randomly chosen from the 16 classes
for training the classifier, and the remaining 10044 labeled
samples are used for testing. Table V reports the obtained OAs,
AAs, individual classification accuracies, and « statistics, along
with the standard deviation of the ten conducted Monte Carlo
runs. It can be observed that the results obtained from the MCs,
which are comparable to each other, are much better than those
obtained from the original MNF component. Furthermore, the
results obtained from the combinations of the MCs are better
than those obtained from one single type of MCs. This is
expected as more textural information is included when addi-
tional textural features are considered. For illustrative purposes,
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Fig. 10. Illustration of data separability by projecting the data into the first two MNF components of the AVIRIS Indian Pines data set. (a) Raw. (b) Content.
(c) Coarseness. (d) Contrast. (e) Horizontal. (f) Vertical.

Fig. 11 presents the classification maps obtained by different classes “corn-no till,” “soybeans-no till,” and “soybeans-min
textural feature components, which results in visually improved till” are better separated by using the MCs than the original
results. As it was already observed in our second experiment, MNF component.
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TABLE IV
BHATTACHARY YA DISTANCE BETWEEN DIFFERENT CLASSES FOR THE AVIRIS INDIAN PINES DATA SET

Bhattacharyya distance between classes

Region Class name Pair of classes
Raw Content | Coarseness | Contrast | Horizontal | Vertical
cl: Corn-no till cl-c2 0.3802 | 0.7087 0.6753 0.6955 1.1221 0.8414
c2: Soybeans-no till cl-c3 0.5306 | 0.9190 0.8226 0.6812 1.2034 0.4484
c3: Soybeans-min till c2-c3 0.8042 1.2661 1.8042 1.3067 2.1375 1.3655
cl: Corn-no till cl-c2 0.4793 | 0.6758 0.7460 0.7749 0.8283 0.9008
¢2: Corn-min till cl-c3 0.5592 | 0.6829 0.7710 0.8922 0.8648 1.0075
c3: Corn c2-c3 0.1365 | 0.1917 0.1350 0.1831 0.2803 0.1410
cl: Corn-min till cl-c2 0.1617 | 0.2280 0.1619 0.3377 0.3687 0.4098
-l c2: Grass/pasture cl-c3 0.2134 | 0.4159 0.2052 0.2693 0.3966 0.1730
c3: Soybeans-clean till c2-c3 0.2015 | 0.4575 0.2334 0.3812 0.4142 0.4495
cl: Corn-no till cl-c2 0.3654 | 0.6579 1.0199 0.6756 1.2682 0.4248
c2: Soybeans-no till cl-c3 0.0716 | 0.1085 0.0575 0.1124 0.1500 0.0605
c3: Soybeans-min till c2-c3 0.4301 | 0.7961 1.2131 0.8914 1.4540 0.4155
cl: Corn-no till cl-c2 0.1716 | 0.2978 0.2561 0.2529 0.3716 0.1898
c2: Grass/trees cl-c3 0.4033 | 0.7765 0.9889 0.7734 1.3119 0.5080
c3: Soybeans-min till c2-c3 0.1974 | 0.3526 0.5553 0.3677 0.6859 0.2459

TABLE V

OAS [%], AAS [%], INDIVIDUAL CLASSIFICATION ACCURACY LEVELS, AND k [%] ALONG WITH THE STANDARD DEVIATION OF
TEN MONTE CARLO (MC) RUNS FOR THE PROPOSED MMCA METHOD FOR THE AVIRIS INDIAN PINES DATA SET, USING 2%
OF ALL OF THE AVAILABLE LABELED SAMPLES FOR TRAINING AND THE REST OF THE LABELED SAMPLES FOR TESTING

#Samples MCs from different textural feature Combinations

cle Train(205) Test(10044) Raw Content Coarseness Contrast Horizontal Vertical Z s Vs CKg
Alfalfa 3 43 84.6545.81 86.98+8.53 85.1249.88 86.05+£7.78 91.3946.16 84.194+13.02 86.05+9.42 9046.07 89.5345.72
Corn-no till 28 1400 78.96+4.37 92354277 90.0541.99 9117424 88.08+3.57 88.81£4.09 9142.52 92.3142.68 92.1643.01
Corn-min till 17 813 63.05+8.89 87.99+7.72 88.75+6.42 85.35+6.03 86.45+6.75 83.67+7.02 88.515.85 90.12+6.29 90.48+6.17
Corn 5 232 49.09413.88 82.33£11.11 84.746.79 757341271 81.77+£6.24 93.414+4.381 88.41+72 91.2546.91 91.2945.82
Grass/pasture 10 473 89.83+3.44 95.542.02 92414327 92.6843.24 93.76+2.8 89.87+4.35 94.36£2.57 95.0742.09 95.2642.15
Grass/trees 15 715 96.63+1.25 99.13£0.69 96.87+3.28 97.9941.72 97.29+1.31 97.29+2.24 98.45+1.33 99.37+0.51 99.54+0.34
Grass/pasture-mowed 3 25 99.6+£1.2 100+0.00 99.6£1.2 99.6+1.2 100+0.00 100+0.00 100+0.00 100£0.00 100£0.00
Hay-windrowed 10 468 98.93+1.97 99.96+0.08 99.91+0.14 99.8740.2 99.6240.38 99.7240.51 99.96£0.09 1004-0.00 99.96+0.13
Oats 3 17 98.2443.77 98.8242.35 98.2443.77 97.6543.9 99.41£1.76 1000.00 98.8242.35 100£0.00 100£0.00
Soybeans-no till 19 953 76.8946.41 92.35+4.55 85.1146.76 86.6446.17 91.8743.45 87.27+7.39 89.0716.45 90.3845.09 89.8445.22
Soybeans-min till 40 2415 77.78+4.49 91.51£3.21 91.08+3.07 90.3342.77 91.74+2.53 89.74+3.66 92.07£2.87 91.96+2.91 92.13+2.79
Soybeans-clean till 12 581 82.01£7.89 88.674+9.4 83.96+8.75 86.59+£7.56 84.03£7.15 83.79+£8.64 87.73+£8.73 88.0648.41 88.1448.41
Wheat 4 201 99.340.33 99.7540.33 98.2641.48 99.1£1.13 99.0541.31 97.614+2.91 994148 99.3+£0.97 99.3£0.97
‘Woods 25 1240 94.89+2.49 99.1240.5 98.82+1.52 98.5841.51 98.1341.36 98.01+2.94 98.73+2.3 99.5+0.52 99.4840.7
Bldg-grass-tree-drives 8 378 62.9649.31 86.611+9.19 82.09+11.92 82.28£11.49 87.67+9.28 90.3749.5 86.75£11.59 86.64+£10.74 87.7£10.55
Stone-steel towers 3 90 70.11419.03 93.1146.94 98.2242.64 97.2243.73 95.2243.52 86.11£10.02 98.33£2.82 98.1143.07 99.11£1.39
Average accuracy - - 82.68+1.25 93.38+1.51 92.07+1.15 91.6841.34 92.84+1.15 91.8741.44 93.5841.24 94.5141.01 94.6240.93
Overall accuracy - - 81.18+1.27 93.12£1.53 91.34+0.87 91.2140.89 91.83+1.08 90.82+1.22 92.76£1.17 93.47+1.1 93.54+1.03
K statistic - - 78.52+1.44 92.15+1.75 90.1240.99 89.97+1.03 90.6941.23 89.54+1.38 91.754+1.33 92.56+1.25 92.64+1.17
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Fig. 11. Classification maps (along with the OAs) obtained by different textural feature components for the AVIRIS Indian Pines data set. These maps correspond

to one single experiment in Table V.

TABLE VI
OAS [%], AAS [%], INDIVIDUAL CLASSIFICATION ACCURACY LEVELS, AND k [%] ALONG WITH THE STANDARD DEVIATION OF TEN MONTE CARLO
(MC) RUNS FOR THE PROPOSED MMCA METHOD FOR THE AVIRIS INDIAN PINES DATA SET, USING A BALANCED DISTRIBUTION WITH 2% OF
THE AVAILABLE LABELED SAMPLES FOR EACH CLASS FOR TRAINING AND THE REST OF THE LABELED SAMPLES FOR TESTING

' #Samples MCs from different textural feature Combinations

cles Train(192) Test(10057) Raw Content Coarseness Contrast Horizontal Vertical Z s Vs CKg
Alfalfa 12 34 94.1243.22 96.76+2.06 98.2441.95 98.2441.95 97.9441.35 97.9441.35 97.9441.35 96.7642.06 95.8841.44
Corn-no till 12 1416 69.8948.12 84.0144.96 79.15£5.3 81.1944.75 80.6146.19 81.5744.67 82.1845.42 82.85+4.67 82.98+4.37
Corn-min till 12 818 68.2344.69 87.6£5.16 81.94458 81.3+42 81.3848.74 80.9844.25 85214472 84.0745.04 84.2247.09
Corn 12 225 82.1846.52 95.6+4.71 94.0446.83 93.8245.75 97.7842.43 96.4+5.13 95.9645.33 97.0244.76 97.3345.08
Grass/pasture 12 471 88.3446.17 93.65+45.47 90.93+5.1 92.4+4.76 92.95+5.12 90.9346.38 92.1245.05 92.8945.09 92.5945.00
Grass/trees 12 718 96.66+1.83 98.3+1.71 97.2341.83 97.8442.09 98.2540.8 96.4942.1 98.37£1.13 99.08£0.59 98.9740.69
Grass/pasture-mowed 12 16 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00
Hay-windrowed 12 466 96.8441.88 100+0.00 1004-0.00 99.7940.64 99.8340.19 99.740.9 100£0.00 100+£0.00 100+£0.00
Oats 12 8 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00 10040.00
Soybeans-no till 12 960 77.0747.45 87.8244.84 83.214£3.91 84.743.28 83.8248.05 81.5848.28 85.1344.19 86.49+5.12 86.2845.78
Soybeans-min till 12 2443 57.9946.62 79.746.64 72.91£631 73.0647.27 78.1946.89 77.45+63 78.4446.86 78.5846.25 78.4145.77
Soybeans-clean till 12 581 80.33+6.21 90.2248.04 86.8747.47 86.4+7.5 83.6748.28 85.184+7.96 89.2947.65 89.14+8.03 88.86+8.16
Wheat 12 193 99.7440.26 99.9540.16 99.7440.42 99.94£0.21 99.594-0.69 99.9540.16 10040.00 10040.00 10040.00
Woods 12 1253 87.9246.47 93.0747.96 92.3947.76 91.3947.66 91.63+7.5 92.2248.02 92.6747.86 92.9648.06 93.1148.15
Bldg-grass-tree-drives 12 374 79.73+£8.81 97.3542.76 97.2742.62 95.48+4.22 96.52+4.4 98.7741.67 98.6641.92 97.8142.82 98.1842.43
Stone-steel towers 12 81 89.1443.16 99.8840.37 99.8840.37 99.6340.79 99.14+1.47 98.89+1.6 99.884-0.37 10040.00 99.8840.37
Average accuracy - - 85.5140.88 93.9940.96 92.1140.76 92.240.77 92.58+0.9 92.3840.85 93.4940.88 93.61+0.85 93.5440.86
Overall accuracy - - 75.9541.75 88.5942.45 84.84+4221 85.1342.24 86.2642.55 85.964-2.47 87.46+2.31 87.7342.26 87.7+2.21
K statistic - - 72.9441.93 87.0842.73 82.89+2.41 83.2342.44 84.4642.84 84.1342.74 85.8242.55 86.13£2.5 86.11+2.45

In a final experiment, we evaluate the performance of the pro-
posed approach under a balanced composition of the training—
test sets. As opposed to the previous experiment, in which
classes with more labeled samples comprised more training
samples, now around 2% of the labeled samples (about
12 samples) per class are randomly chosen for training, and the
remaining labeled samples are used for testing. Table VI reports
the OAs, AAs, individual classification accuracy levels, and
K statistics, where the standard deviations are also included.
Similar observations can be obtained as those from Table V.
Along with the third experiment, this experiment shows that the
proposed approach can lead to very good classification accura-

cies for problems with limited training samples, regardless of
whether the distribution of training samples across the classes
is either balanced or unbalanced.

B. Experiments With Polarimetric SAR Data

In order to further validate the proposed MMCA method,
two polarimetric SAR data sets are employed. PolSAR is a
new form of SAR radar system, and it emits and receives
multifrequency and fully polarized radar waves. For the past
years, POISAR has been widely used in land-cover classification
[56] and change detection in remote sensing applications [57].
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Fig. 12. (a) False color composition of the AirSAR Flevoland image. (b) Ground-truth map containing 11 mutually exclusive land-cover classes (right).

(b)

Fig. 13. (a)False color composition of the EMISAR Foulum image. (b) Ground-
truth map containing five mutually exclusive land-cover classes (right).

The first data set used in our experiments is the AirSAR L-band
PoISAR data set, obtained by NASA JPL over the Flevoland
site in The Netherlands. These data and the ground-truth are,
respectively, displayed in Fig. 12(a) and (b). The Flevoland
image, with a size of 375 x 512 samples, contains different
crop classes as well as bare soil, water, and forests. The second
data set is a full polarimetric airborne SAR L-band PolSAR data
set acquired by the EMISAR system over Foulum, Denmark.
These data and the ground-truth are, respectively, displayed in
Fig. 13(a) and (b). The Foulum image, with a size of 300 x
421 samples, covers a vegetated region which consists of water,
coniferous, rye, oat, and winter wheat. These two data sets are
very challenging due to the fact that a significant amount of
speckle noise exists.

1) Evaluation of Classification Accuracies: In order to vali-
date the classification performance, in a first experiment, we use
2% of the available samples per class for training in the AirSAR
data and 1% of the available samples per class for training
in the EMISAR data, respectively. The remaining samples are
used for testing. Tables VII and VIII, respectively, report the
obtained OAs, AAs, individual classification accuracy levels,
and « statistics obtained for the AirSAR and EMISAR data
sets, along with the standard deviation of the ten conducted
Monte Carlo runs. It can be observed from Tables VII and VIII
that the results obtained from the MCs, which are comparable
to each other, are much better than those obtained from the
original image. This is particularly the case for the AirSAR
data, in which the results obtained from the contrast component
are better than those obtained from the other components. This
is expected because the generated high-contrast component
presents fast intensity changes which strengthen the differences

between the classes. Similar results were also found for the
EMISAR data. For illustrative purposes, Figs. 14 and 15, re-
spectively, present some of the classification maps obtained for
the AirSAR and EMISAR data sets by the different considered
textural feature components. Visual improvements in the ob-
tained classification results can be clearly appreciated for the
proposed MMCA approach.

2) Comparison With State-of-the-Art Approaches: In the
second experiment, we compared the proposed MMCA ap-
proach with the widely used EMAP [53] and EMD [14] by
using different numbers of training samples per class. For
the EMAP approach, we considered four different attributes
constructed on each MNF component: 1) area of the regions
(Aa = [100, 500]); 2) length of the diagonal of the box bound-
ing the region (A\y = [10, 25]); 3) moment of inertia [11] (\; =
[0.2,0.3]); and 4) standard deviation of the gray-level values
of the pixels in the regions (As; = [20, 30]). For the EMD ap-
proach, we choose the first three IMFs, and we stacked them for
classification. Fig. 16 presents the obtained OAs as a function
of the number of training samples per class. It is noticeable
that, when the number of training samples is small, the results
obtained by the proposed MMCA approach are superior to
those obtained by the other tested methods. With the increase
in the number of training samples, the results obtained by the
three considered approach are comparable.

3) Parameter Analysis: In a third experiment, we perform
a detailed analysis on the parameters Aj, A2 involved in the
decomposition framework (4), along with the size of the image
partitions, i.e., U(a), and the number of partitions p. Fig. 17
shows the obtained OAs for the AirSAR and EMISAR data
sets, respectively, in which the classification of AirSAR used
2% samples per class for training, the classification of EMISAR
used 1% samples per class for training, and the remaining
samples were used for validation. In this experiment, we choose
the components obtained by the contrast feature, as it exhibits
better classification performance in the former experiments.
Fig. 17(a) and (c) shows the OAs (as a function of parameters
A1 and \2) obtained by MMCA for the AirSAR and EMISAR
data sets with fixed U(a) = 8 x 8 and p = 10, while Fig. 17(b)
and (d) shows the OAs (as a function of parameters U (a) and p)
obtained by MMCA for the AirSAR and EMISAR data sets
with fixed A\; = Ay = le — 5. As it can be observed, the classi-
fication performance is almost insensitive to A;. For Ay, when
the value of this parameter is lower than le — 4, the results are
stable. Therefore, it is easy to determine a good suboptimal
setting for A\; and A,. Furthermore, we can infer that small
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TABLE VII
OAS [%], AAS [%], INDIVIDUAL CLASSIFICATION ACCURACIES, AND Kk [%] ALONG WITH THE STANDARD DEVIATION OF TEN MONTE CARLO (MC)
RUNS FOR THE PROPOSED MMCA METHOD FOR THE FLEVOLAND AIRSAR IMAGE DATA SET, USING A TOTAL OF 2% OF THE
AVAILABLE LABELED SAMPLES FOR TRAINING AND THE REMAINING LABELED SAMPLES FOR TESTING

#Samples MCs from different textural feature Combinations

e Train(1084) Test(53192) Raw Content Coarseness Contrast Horizontal Vertical > s Vs CKg
Wheat 230 11252 73.724£2.09 76.49+1.80 76.30£1.84 83.614-0.98 78.314+1.87 79.53+1.66 81.4941.48 85.6311.63 85.6711.66
Water 158 7767 89.4511.83 88.08+1.32 95.4040.85 93.124+1.03 90.4241.23 89.504-1.28 91.70£1.26 95.331+1.31 95.261+1.29
Forest 128 6295 75.75+1.64 79.4141.46 89.91+0.44 95.40+0.41 89.0311.39 89.0041.63 92.33+0.76 93.7741.09 94.044-0.87
Rapeseed 122 6007 69.9543.06 74.06+3.35 85.394-2.81 86.724-4.65 79.674+2.97 78.30+3.01 84.264-2.89 87.3542.47 88.53+2.10
Potatoes 108 5271 74.9841.93 76.661+1.86 78.79+2.74 89.2841.46 80.58+1.92 81.2142.72 87.314-2.02 90.4341.99 89.9642.30
Peas 86 4178 51.0141.76 54544231 62.57+2.31 72.4542.66 58.064-2.07 59.854+2.07 66.24+2.53 74.004-2.06 76.334+1.60
Beet 68 3341 57.8942.63 63.2942.84 54.984+3.73 78.18+3.80 70.4843.19 65.021+4.08 74.074+3.89 77.6443.09 76.77+3.31
Lucerne 60 2944 80.424-2.87 81.1143.86 78.971+4.35 85.9643.79 79.8742.53 85344251 84.2143.56 86.7312.52 87.201-2.87
Grass 54 2671 50.4543.18 54.494-2.88 60.131+3.94 73.284£3.02 56.4743.72 60.6012.27 68.38+2.85 83.1843.13 82.8442.52
Stem beans 38 1894 75.33£5.00 79.1944.31 82.7542.03 90.23+0.95 83.8843.56 83.0342.17 88.1941.29 88.3542.54 88.7911.86
Bare soil 32 1572 41.23+7.26 52.1944.62 83.1147.62 88.861-4.63 73.0315.06 68.00+5.83 81.044-4.52 91.2543.05 91.2542.65
Average accuracy - - 67.2940.78 70.8610.71 77.1240.99 85.1940.52 76.3540.52 76.314+0.59 81.7540.48 86.704-0.53 86.9740.45
Overall accuracy - - 71.48+0.29 74.2440.27 79.3240.59 86.094-0.42 78.6810.32 78.831+0.31 83.2140.20 87.4740.33 87.7440.30
K statistic - - 67.4440.29 70.624-0.31 76.4710.68 84.194-0.48 75704035 75.8940.35 80.904-0.23 85.744-0.37 86.05+0.34

TABLE VIII

OAS [%], AAS [%], INDIVIDUAL CLASSIFICATION ACCURACIES, AND k [%] ALONG WITH THE STANDARD DEVIATION OF TEN MONTE CARLO (MC)
RUNS FOR THE PROPOSED MMCA METHOD FOR THE FOULUM EMIS AR IMAGE DATA SET, USING A TOTAL OF 1% OF THE
AVAILABLE LABELED SAMPLES FOR TRAINING AND THE REMAINING LABELED SAMPLES FOR TESTING

#Samples MCs from different textural feature Combinations

el Train(237) Test(23336) Raw Content Coarseness Contrast Horizontal Vertical s Vs CKg
Winter wheat 11 1077 94.974+2.78 97.29+£1.55 99.55+1.34 10040.00 99.0340.73 99.8240.16 99.98+0.06 99.98+0.06 1004-0.00
Coniferous 129 12722 99.81+0.24 99.94+40.05 1004-0.00 1004-0.00 99.99+0.01 99.9940.01 1004-0.00 1004-0.00 10040.00
‘Water 67 6628 91.824+1.85 93.29+1.51 98.881+0.44 98.34+0.51 97.3240.48 97.18+0.91 98.4440.89 99.184+0.72 99.34£0.69
Oat 12 1160 79.08+9.68 85.78+6.34 87.648.35 98.41+1.18 90.98+4.89 88.47+4.26 96.06+3.21 94.31+5.13 97+42.13
Rye 18 1749 94314391 96.95+3.41 92.8242.6 99.95+0.1 97.07+£42 99.05+0.84 99.19+£1.21 1004-0.00 1004-0.00
Average accuracy - - 91.994+2.38 94.65+1.41 95.77+1.33 99.34+0.22 96.88+1.46 96.94-0.79 98.7440.66 98.69+0.99 99.2740.45
Overall accuracy - - 95.87+0.34 96.99+0.23 98.514£0.34 99.45+0.13 98.5340.44 98.54+0.19 99.340.25 99.48+0.27 99.66+0.23
K statistic - - 93.274+0.57 95.1140.37 97.561+0.56 99.09+0.22 97.594+0.72 97.62+0.31 98.86+0.4 99.1610.45 99.45+0.37
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Fig. 14. Classification maps (along with the corresponding OAs) obtained after
using different textural feature components for the AirSAR data set.

sizes of U(a) and p also bring very good results. Therefore, we
can choose relatively small dictionaries for the MMCA, thus
alleviating computational cost in the experiments.

Raw(95.87%)

Contrast(99.45%
F P

CK, (99.66%)

Vertical (98.54%)

5. (99.3%) V. (99.48%)

Fig. 15. Classification maps (along with the corresponding OAs) obtained after
using different textural feature components for the EMISAR data set.

4) Statistical Significance Results When Using Multiple
Textural Features: In our last experiment in this section, we
perform an analysis of the statistical significance of differ-
ences among all of the considered textural features by using
McNemar’s test [58]. In this experiment, the value of |z| > 1.96
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Fig. 17. Investigation of parameter settings: (a) and (b) refer to the AirSAR data set, while (c) and (d) refer to the EMISAR data set. (a) OAs as a function of
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EMISAR. (d) OAs as a function of the size of image partition U (a) and the number of atoms for EMISAR.
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TABLE IX
STATISTICAL SIGNIFICANCE OF THE DIFFERENCES IN CLASSIFICATION
ACCURACIES (MEASURED USING MCNEMAR’S TEST IN [58]) FOR THE
PROPOSED MMCA FRAMEWORK, USING DIFFERENT TEXTURAL
FEATURES EXTRACTED FROM THE AIRSAR DATA SET

Value of z calculated by the McNemar’s test

Content | Coarseness | Contrast | Horizontal Vertical
Content - -16.5831 -24 -18.6815 -16.4012
Coarseness| 16.5831 - -17.3494 -8.6023 2.4495
Contrast 24 17.3494 - 15.0665 17.5214
Horizontal | 18.6815 8.6023 -15.0665 - 8.9442

Vertical | 16.4012 -2.4495 -17.5214 -8.9442 -

TABLE X

STATISTICAL SIGNIFICANCE OF THE DIFFERENCES IN CLASSIFICATION
ACCURACIES (MEASURED USING MCNEMAR’S TEST IN [58]) FOR THE
PROPOSED MMCA FRAMEWORK, USING DIFFERENT TEXTURAL
FEATURES EXTRACTED FROM THE EMISAR DATA SET

Value of z calculated by the McNemar’s test
Content | Coarseness | Contrast | Horizontal | Vertical
Content - 9.3808 -5.1962 2.6458 -2
Coarseness | -9.3808 - -10.7238 -9 -9.5917
Contrast 5.1962 10.7238 - 5.8310 4.7958
Horizontal | -2.6458 9 -5.8310 - -3.3166
Vertical 2 9.5917 -4.7958 3.3166 -

indicates the significant difference in accuracy between two
classification methods. Tables IX and X, respectively, provide
the results obtained for five textural features with the AirSAR
and EMISAR data sets. As we can observe, these textural
features have significant differences in classification accuracies
(all of the values of |z| > 1.96) since the sign of z is a criterion
to indicate the priority between two methods (|z| > 0 indicates
that the first classifier is better than the second classifier or
vice versa). The obtained results are also in accordance with the
classification results from Tables VII and VIII. It is clear that
the differences of the different textural features are statistically
significant. Therefore, we conclude that it is essential to exploit
different textural features for classification.

IV. CONCLUSION AND FUTURE LINES

In this paper, we have proposed a new method for advanced
classification of remotely sensed images based on MMCA and
sparse representation. The proposed MMCA method decom-
poses the original image into several pairs of MCs, where
different MCs represent different image textural features, and
corresponding dictionaries are generated to calculate mor-
phological coefficients. Then, we have performed sparse-
representation-based image decomposition. The proposed
approach for advanced morphological feature extraction is then
combined with a widely used classifier in order to perform clas-
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sification of remotely sensed images. Our experimental results,
conducted using a variety of hyperspectral and polarimetric
SAR images, indicate that the proposed approach is suitable
for analyzing multiple kinds of remote sensing data, leading
to better classification performance than those exhibited by
competitors in different scenarios, with particular emphasis in
case studies dominated by limited training samples (with either
balanced or unbalanced distribution of the samples used for
training). The capacity of the proposed method to deal with dif-
ferent kinds of remotely sensed images results from its ability
to incorporate multiple texture features in order to fully retrieve
the image texture information, rather than using a single spatial
characteristic of the texture. Since different data sets contain
different structures and different images may require different
textural features for adequately representing their content, in the
future, we will explore the important topic of how to select an
optimized textural feature for a given image. Another important
topic deserving future research is a more detailed evaluation of
the methodology with different types of remote sensing data
such as light detection and ranging (LiDAR). We will also
exploit the proposed classification approach with multiple data
sources in the context of data fusion.
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