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Abstract—In recent years, the support vector machines (SVMs)
have been very successful in remote sensing image classification,
particularly when dealing with high-dimensional data and limited
training samples. Nevertheless, the vector-based feature alignment
of the SVM can lead to an information loss in representation of
hyperspectral images, which intrinsically have a tensor-based data
structure. In this paper, a new multiclass support tensor machine
(STM) is specifically developed for hyperspectral image classi-
fication. Our newly proposed STM processes the hyperspectral
image as a data cube and then identifies the information classes in
tensor space. The multiclass STM is developed from a set of binary
STM classifiers using the one-against-one parallel strategy. As a
part of our tensor-based processing chain, a multilinear principal
component analysis (MPCA) is used for preprocessing, in order to
reduce the tensorial data redundancy and, at the same time, pre-
serve the tensorial structure information in sparse and high-order
subspaces. As a result, the contributions of this work are twofold: a
new multiclass STM model for hyperspectral image classification
is developed, and a tensorial image interpretation framework is
constructed, which provides a system consisting of tensor-based
feature representation, feature extraction, and classification. Ex-
periments with four hyperspectral data sets, covering agricultural
and urban areas, are conducted to validate the effectiveness of
the proposed framework. Our experimental results show that the
proposed STM and MPCA-STM can achieve better results than
traditional SVM-based classifiers.
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I. INTRODUCTION

IN THE past decades, hyperspectral imaging has attracted
extensive research efforts since such data provide contin-

uous bands throughout the electromagnetic spectrum, as well
as exhibit the potential to precisely discriminate between dif-
ferent land cover types using a wealth of spectral information
[1], [2]. Supervised hyperspectral image classification where
pixels are labeled to one of the predefined classes, is among
the most active research areas in hyperspectral analysis [3].
Many supervised classification methods have been developed
for hyperspectral imagery [4]–[8], including random forest
[9], [10], spectral unmixing [11], [12], subpixel mapping [13],
neural networks [14], decision trees [15], and several others
[16]–[18]. As a supervised machine learning technique, support
vector machine (SVM) has achieved great success in vari-
ous applications, including military problems [19], biological
analysis [20], and pattern recognition [21]. It aims to acquire
a classification hyperplane that maximizes the margin between
the samples [22]. Taking advantage from its ability in dealing
with high-dimensional data sets and limited training samples,
SVM has been shown to be successful for hyperspectral image
classification [23]–[25].

However, when the ratio between the number of spectral
bands and the number of available training samples is unbal-
anced, hyperspectral image classification becomes an ill-posed
problem that can reduce the interpretation accuracy [26], [27].
To alleviate the problem of information redundancy in hy-
perspectral spaces, SVM is often implemented together with
the dimensionality reduction preprocessing [28]. Meanwhile,
semisupervised SVMs have been also developed for solving
the problem of limited training samples in high-dimensional
feature spaces [29]. In addition, variations of the SVM-based
algorithms include postprocessing based on decision rules
[30], consideration of spatial information [31], [32], composite
kernels [33], and active learning [34], [35].

It should be noted that the vector-based processing mode
and feature alignment traditionally used by the SVM can lead
to the loss of structural information for hyperspectral imagery,
which has an intrinsic tensor-based data structure. Specifically,
the spatial relationship between pixels cannot be effectively
exploited in a vector-based approach for feature representation
and interpretation. Inspired by the tensor learning methods
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Fig. 1. Visual illustration of the mode-d tensor product operation.

developed in the area of signal processing, a support tensor
machine (STM) [36] can be achieved by generalizing the SVM
to its tensorial version based on multilinear algebra principles.
The goal is to keep the robust performance of the classic SVM
formulation while, at the same time, preserving the manifold
data structure in sparse and high-dimensional feature spaces.
STM has been applied to multiple applications, such as data
retrieval [37], face recognition [38], and gait recognition [39].
However, in the existing literature, few studies have been
reported for applying STM to remote sensing problems in
general and hyperspectral image classification problems in
particular. In this context, here, we develop a new multiclass
STM and a tensor-based hyperspectral image processing
chain to solve the multiclass classification for remote sensing
imagery. Our systematic framework includes tensor-based
feature extraction, dimensionality reduction, and classification.
Specifically, in this paper, a multilinear principal component
analysis (MPCA) [40] is used to reduce data redundancy due
to the sparse and redundant high-dimensional tensor feature
space for the hyperspectral data. The main contribution of this
work is to introduce and adapt STM into hyperspectral remote
sensing image classification. The effectiveness of the proposed
method is validated by a set of experiments conducted on four
hyperspectral data sets covering various land cover types. In
addition, the parameters (e.g., window size, number of training
samples, penalty coefficient, and feature dimensionality) are
analyzed in detail in experiments.

The remainder of this paper is organized as follows. A
brief review of multilinear algebra is given in Section II. The
proposed STM and its multiclass version are described in
Section III, followed by the tensor-based dimensionality
reduction framework, which is described in Section IV. Ex-
perimental results and a comparison with state-of-the-art meth-
ods for hyperspectral image classification are provided in
Section V. Section VI analyzes the impact of parameters in
the developed processing chain. The last section concludes this
paper with some remarks and hints at plausible future research
lines.

II. TENSOR AND MULTILINEAR ALGEBRA

The proposed STM classification framework was based on
multilinear algebra theory [41], [42] and processes the tensorial
input data in a multidimensional manner. In the related litera-
ture, a multidimensional array is defined as a tensor, which is
represented as A ∈ RL1×L2×···×LN . The order of the tensor A is
N , and each order is called the ith mode. An arbitrary element
of A is a scalar, which is denoted by al1,l2,...,li,...,lN , where
1 ≤ li ≤ Li, and 1 ≤ i ≤ N , with li being the location of this
element in the ith mode. According to this definition, a tensor is
the higher order equivalent of a vector (one-order tensor) and a
matrix (two-order tensor). In this context, a hyperspectral data
cube can be regarded as a three-order tensor A ∈ RL1×L2×L3 ,
in which orders 1 and 2 represent the spatial domain and order
3 represents the spectral domain. Some definitions related to
basic tensor algebra [43] are given as follows.

Definition 2.1 (Mode-d Matricizing): Also known as mode-d
matrix unfolding, the mode-d matricizing of an N -order
tensor A ∈ RL1×L2×···×LN is denoted by matdA ∈
RLd×(L1L2,...,Ld−1Ld+1,...,LN ), which represents an ensemble
of vectors in the dth mode obtained by keeping index Ld fixed
and varying the other indices.

Definition 2.2 (Mode-d Product): The mode-d product is an
operation between a tensor A ∈ RL1×L2×···×LN and a matrix
U ∈ RLd×Ld

′
, which is defined as

(A×d U
T)l1×l2×···×ld−1×ld′×ld+1×···×lN

=
∑
ld′

(
Al1×l2×···×ld−1×ld×ld+1×···×lNUld′×ld

)
(1)

where l1, l2, . . . , lN represent the indices of each mode. It
should be emphasized that the dth mode size of tensorA is equal
to the second mode size of matrix U. The mode-d product can
be regarded as incorporating the information of the input tensor
and matrix. Meanwhile, as the first mode size of U varies,
dimensionality reduction and data filtering can be implemented
via this operation. A visual illustration of mode-1 product
between a three-order tensor and a matrix is presented in Fig. 1.
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Fig. 2. Two-class problem in a high-dimensional input space solved with STMs.

Definition 2.3 (Outer Product): Operator “◦” refers to
outer product. a1 ◦ · · · ◦ aN = A constructs a new tensor A ∈
RL1×L2×···×LN , with each element being the product of the
corresponding vector elements [44], i.e.,

al1,l2,...,lN = a1(l1) · a2(l2), . . . , aN (lN ) (2)

where aN (lN ) denotes the lN (1≤ lN ≤ LN ) element from aN .

III. STM

A. Binary STM

As aforementioned, SVM employs optimization algorithms
to find the optimal separation boundaries between classes [45].
These optimal boundaries are calculated by minimizing the
errors among all possible boundaries estimated by the available
samples for each class. The decision function of the classic
SVM is y(a) = sign(ωTa+ b), where a ∈ RL×1 is the unla-
beled vector input, y ∈ {−1,+1} refers to the predicted label,
b is the bias term, and ω ∈ RL×1 is the projection matrix. The
model parameters can be calculated by solving the following
optimization problem:⎡

⎢⎣
min
ω,b,ξ

f(ω, b, ξ) = 1
2‖ω‖2 + c

∑N
i=1 ξi

s.t. yi[ω
Tai + b] ≥ 1− ξi, 1 ≤ i ≤ N

ξi ≥ 0

⎤
⎥⎦ . (3)

As a tensorial generalization of SVM, STM aims at finding
a series of hyperplanes that separate the tensorial data set
into a set of predefined classes in a way that is consistent
with the training samples. The multilinear decision function
for STM is modeled to classify the unlabeled tensorial input
A ∈ RL1×L2×···×LN in the following high-order form:

y(A) = sgn

(
A

N∏
k=1

×kωk + b

)
(4)

where y ∈ {−1,+1}, b is the bias term, and ωk ∈ RLk×1 is the
weight calculated by⎡
⎢⎢⎢⎢⎢⎣

min
ωk|Nk=1,b,ξ

f
(
ωk

∣∣N
k=1 , b, ξ

)
= 1

2‖ω1 ◦ · · · ◦ ωN‖2+ c
N∑
i=1

ξi

s.t. yi

[
Ai

N∏
k=1

×kωk + b

]
≥ 1− ξi, 1 ≤ i ≤ M

ξi ≥ 0

⎤
⎥⎥⎥⎥⎥⎦

(5)

where ωk

∣∣N
k=1 represents ωk (k = 1, 2, . . . , N) for short, and

ωk corresponds to the weight matrix on the kth mode. In the
equation, ξ is the slack variable vector used to deal with the
linearly nonseparable cases, and c is a regularization coefficient
for penalizing misclassification errors. M is the number of total
training samples, and Ai (1 ≤ i ≤ M) corresponds to the ith
training tensor.

Based on the objective function defined in (5), the
Lagrangian for STM is given by

L
(
ωk

∣∣N
k=1 , b, ξ, α

)
= f

(
ωk

∣∣N
k=1 , b, ξ

)
−

N∑
i=1

αi

(
yici

(
Ai

N∏
k=1

×kωk + b

)
− ξi

)
(6)

whereαi ≥ 0 (i = 1, 2, . . . ,M) are the Lagrangian multipliers.
The derivations of L(ωk

∣∣N
k=1 , b, ξ, α) with respect to variables

ωk (k = 1, 2, . . . , N) and b should be set to 0 in the optimiza-
tion process, which can be solved by

∂ωj
f =

M∑
i=1

αiyi
dci
dz

(Ai×jωj) (7)

∂bf =

M∑
i=1

αiyi
dci
dz

(8)

with z = Ai

∏N
k=1 ×kωk + b. However, the weight matrix ωj

in (7) depends on matrix ωi (1 ≤ i ≤ N , i �= j) and hence
cannot be solved independently. An alternating projection opti-
mization [46] is therefore adopted to obtain the local optimal
solution. Specifically, the parameters associated with ωi are
iteratively solved while keeping the other parameters fixed.
After achieving convergence, with the parameters ω and b
resolved, the classification hyperplane obtained is given by

A
N∏

k=1

×kωk + b = 0. (9)

A graphical illustration of the scenario corresponding to a
two-class problem in a high-dimensional input space solved
with STMs is given in Fig. 2.

B. Multiclass STM

The STM is intrinsically a binary classifier. It can be
adapted to multiclass classification problems, however, with a
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Fig. 3. Comparison between vector and tensor representations for a hyperspectral image (HSI).

one-against-one (OAO) parallel strategy [47]. Similarly, the
multiclass STM can be extended from the binary STM by
finding a series of hyperplanes which pairwisely maximize the
margin between positive and negative samples from different
classes, as well as predict the class label by majority voting.
This way, the outputs of all binary classifiers are taken into
account for constructing the multiclass STM.

Let us consider a multiclass problem defined by a set
Ω = {C1,C2, . . . ,CS} consisting of S information classes;
the decision function yi,j(A) between each possible pair of
classes Ci and Cj (i �= j) can be obtained. The OAO strategy
constructs S(S − 1)/2 binary STMs to model all the possible
pairwise classifications. Subsequently, an unlabeled sample A
is classified by applying each pairwise classifier and computing
the score function which sums the number that this sample is
assigned to that class label as follows:

Scorei =
S∑

i=1,i�=j

yi,j(A). (10)

The class with the highest score is then considered as the
predicted label for the unlabeled sample A.

C. STM-Based Classification

To obtain the tensorial inputs corresponding to the labeled
and unlabeled samples, a local neighborhood around the central
pixel is extracted to represent a spatial–spectral tensor. For
example, the tensor representation with a series of window
sizes is graphically illustrated in Fig. 3 considering two types
of vector representation: band interleaved by pixel (BIP) and
band sequential (BSQ). After the tensor feature representation
is obtained, the labeled training tensors are used for generating
the classification hyperplanes, which can be used to interpret
the unlabeled ones.

It should be noted that the conventional vector-based analysis
approach needs to unfold the cubic features into vectors for
feature description and classification since traditional classifiers
can only process vector inputs. However, the proposed STM
is able to directly model the spectral–spatial tensor, which is
naturally aligned as a cube for image interpretation. Compared
with the traditional SVM, this characteristic presents a main
methodological advantage of STM.

IV. REDUNDANCY REDUCTION FOR STM

Although the tensor-based processing approach described in
the previous section can fully exploit the image spectral–spatial
data structure and preserve the data manifold, the tensor-
based data representation will necessarily lead to information
redundancy due to the fact that a sparse hyperspectral fea-
ture space is derived from hundreds of continuous spectral
channels. Moreover, due to the spatial similarity, the spectral
signals of neighboring pixels are likely to be quite correlated,
which is also a source of redundancy. The sparse and high-
dimensional feature space exists in both spectral and spatial
domains, particularly when the neighboring pixels (in a moving
window) in a hyperspectral image are simultaneously taken
into consideration for classification. Therefore, the direct use
of tensor inputs will lead to a large amount of data redundancy,
which poses problems to computational storage and efficiency,
particularly for hyperspectral data with limited training sam-
ples. In this regard, reducing the redundancy is a crucial step for
the proposed tensor processing and classification framework.

To deal with this problem, dimensionality reduction and
feature extraction methods have been commonly applied. Here,
we consider a tensor dimensionality reduction method and
adapt it to the proposed tensor-based processing framework.
Specifically, we use the MPCA [40], [48] as preprocess-
ing for the STM classifier. This way, a novel tensor-based
image interpretation framework is proposed by effectively
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Fig. 4. Flowchart of the proposed tensor-based classification framework.

integrating tensor-based dimensionality reduction and classi-
fication. Please note that, in the proposed framework, MPCA
can be replaced by other tensor-based dimensionality reduc-
tion methods, e.g., higher order singular value decomposition
(HOSVD) [49]–[51].

A. MPCA

The basic idea of the MPCA is to extract the most significant
signal components for all the tensor modes, while retaining as
much as possible the data variation in the original data set. The
potential of the MPCA-based tensor feature extraction has been
shown in high-order computer vision and pattern recognition
applications, such as face [52], handwriting [53], and gait
recognition [54], [55]. However, few studies have been devoted
to the use of MPCA for hyperspectral image feature extraction
in the existing literature.

MPCA formulation involves the acquisition of projec-
tion matrices and low-dimensional tensors. Given a set of
N -mode tensors {Am ∈ RL1×L2×···×LN }, m = 1, 2, . . . ,M ,
we attempt to derive the projection matrices Ud ∈ RLd×Dd ,
d = 1, 2, . . . , N , with which the low-dimensional repre-
sentation of input tensor B ∈ RL1×L2×···×LN can be ob-
tained by B′ = B×1U

T
1 × · · ·×dU

T
d × · · · ×NUT

N , with B ∈
RD1×D2×···×DN . However, it is an NP-hard problem to obtain
all N projection matrices simultaneously. For this purpose, the
alternating least square (ALS) algorithm can be used to solve
the optimization of projection matrices approximately[56]. The
procedure of MPCA can be summarized by the following steps:

1) Data centralization: Ãm=Am−A,A=(1/M)
∑M

m=1Am.
2) At dth mode, unfold tensor Ãm into matrix matdÃm

and perform eigendecomposition using φd =∑M
m=1(matdÃm) · (matdÃm)T. The projection matrix

Ud is initialized as the eigenvectors associated with the
most significant Dd eigenvalues.

3) Optimization of the projection matrices with ALS.
The initial projection is formed by calculating P̃m =

Ãm ×1 U
T
1 × · · · ×d U

T
d × · · · ×N UT

N and the scatter

matrix ψ0 =
∑M

m=1 ‖P̃m‖2F. Perform eigendecomposi-
tion for the covariance matrix φd =

∑M
m=1(matdP̃m)·

(matdP̃m)T and define Ud as the eigenvectors corre-
sponding to the most significant Dd eigenvalues, d =
1, 2, . . . , N . In an iterative way, the projection P̃m =
Ãm ×1 U

T
1 × · · · ×d U

T
d × · · · ×N UT

N and the corre-
sponding scatter ψk can be updated. If the difference of
the scatter matrix ψk − ψk−1 is smaller than a prede-
fined threshold, the optimization of projection matrices
is completed.

4) The low-dimensional tensor can be obtained by ap-
plying the mode-d product between the input tensor
and the optimized projection matrix: B′ = B×1U

T
1 ×

· · · ×dU
T
d × · · · ×NUT

N .

B. MPCA-STM

The traditional vector-based image processing framework
unfolds high-order features into vectors, which are subse-
quently fed into a vector-based classifier. This vector-based
image processing strategy cannot sufficiently exploit the intrin-
sic tensor-based data structure. However, the tensor-based data
representation is necessarily subject to the problem of data re-
dundancy. As aforementioned, the redundancy is caused by the
sparse hyperspectral feature space in both spectral (hundreds of
continuous spectral channels) and spatial (similar pixels in the
neighborhood) domains. In this context, in order to guarantee
the efficiency and successful application of the STM to hyper-
spectral image classification, redundancy reduction is needed
for preprocessing. In this paper, a tensor-based dimensionality
reduction method (e.g., MPCA) is used for preprocessing of
the STM classification. The whole procedure of the proposed
tensor-based classification framework is therefore summarized
in Fig. 4. Here, the tensor-based redundancy reduction refers
to both the spectral and spatial dimensions. In the following,
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Fig. 5. False-color compositions of the four hyperspectral images used in our experiments. (a) AVIRIS Indian Pines. (b) HYDICE Washington DC Mall.
(c) ROSIS-03 Pavia University. (d) PHI Xiaqiao.

{Dspa, Dspa, Dspe} are used to denote the reduced dimensions
for a hyperspectral image, where Dspa and Dspe are the spatial
and spectral dimensions after reduction, respectively. The same
value of dimensionality (i.e., Dspa) is defined for the x (hori-
zontal) and y (vertical) directions in the spatial domain, since
no prior information is available to determine which direction
is the most relevant. In the following, we provide a set of
experimental results to evaluate the classification accuracy of
the framework presented in Fig. 4.

V. EXPERIMENTS

The proposed classification framework has been validated
using four real hyperspectral images acquired from the in-
struments: Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), Reflective Optics System Imaging Spectrometer
(ROSIS-03), Hyperspectral Digital Imagery Collection Experi-
ment (HYDICE), and Pushbroom Hyperspectral Imager (PHI).
The considered images are presented in Fig. 5.

To verify the effectiveness of the proposed tensor-based
classification framework, the proposed STM and MPCA-STM
are compared with SVM with various kernel functions (e.g.,
the linear kernel and the Radial Basis Function (RBF) kernel).
Furthermore, in this study, PCA-SVM is also carried out to
consider dimensionality reduction in the SVM classification
for comparison with MPCA-STM. Specifically, analogous to
MPCA-STM, the pixels in a window are stacked as a long
feature vector, and PCA is then used to reduce the informa-
tion redundancy in the vector. The reduced features are then
input to an SVM for classification. The model parameters (i.e.,
penalty coefficient c and bandwidth γ for the RBF kernel)
of the SVM are selected based on fivefold cross validation.
The classification accuracy is assessed by using the overall
accuracy (OA) and the κ coefficient based on a confusion
matrix. Each classification scenario is repeated ten times with
different randomly selected training sets, and the mean and
standard deviation of the classification results are reported for
the assessment of classification performance.

A. Experiments With the AVIRIS Indian Pines Data Set

The Indian Pines data were collected by the AVIRIS sensor
in 1992 over an agricultural area in northern Indiana, USA. This
hyperspectral image contains 16 classes with 145 × 145 pixels
and 220 spectral bands between 0.4 and 2.5 μm. The classes
and the corresponding numbers of training and test samples
are listed in Table I. For each class, we randomly select a
very limited number of 15 pixels for each class for training
and use the remaining samples for accuracy assessment. The
window size for the STM classification is set empirically to
9 × 9, and the reduced dimensionality in MPCA-STM is set as
{1,1, 40} according to our cross-validation experiments. Please
note that the first principal component in the spatial domain is
sufficient to represent the local image cube, as will be discussed
in Section VI-D.

The classification maps and accuracy assessment for the
AVIRIS Indian Pines are shown in Fig. 6 and Table I. By
analyzing the classification accuracies, it is observed that the
SVM with the RBF kernel (RBF-SVM) outperforms the linear
SVM (Lin-SVM) since the former can effectively discriminate
samples that are not linearly separable. It can be seen that the
proposed STM outperforms the SVM in terms of accuracies, as
the SVM neglects the local correlation of neighboring pixels,
which also leads to salt and pepper noise. Compared with
SVM with linear and RBF kernel, the proposed multiclass STM
increases the accuracy of OA by 11.8% and 5.0%, respectively.
It can be also seen that the highest accuracy, i.e., OA = 80.6%,
is achieved by MPCA-STM, which significantly outperforms
STM. This demonstrates that large amount of redundancy exists
in the tensor-based hyperspectral image representation, and a
spectral–spatial dimensionality reduction approach is neces-
sary for the tensor-based image interpretation. As shown in
Table I, the proposed STM and MPCA-STM methods out-
perform PCA-SVM in terms of improvements of OA (0.2%
and 18.2%, respectively). The better performance of the STM
methods can be attributed to the fact that they process an
image as a cube, but the PCA-SVM realigns the cube into a
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TABLE I
ACCURACY COMPARISON FOR THE AVIRIS INDIAN PINES DATA SET (MEAN AND STANDARD DEVIATIONS OF TEN DIFFERENT EXPERIMENTS ARE GIVEN)

Fig. 6. Classification results obtained by different methods for the AVIRIS Indian Pines data. (a) SVM (linear kernel). (b) SVM (RBF kernel). (c) PCA-SVM.
(d) STM. (e) MPCA-STM. (f) Ground-truth reference.

vector, which does not sufficiently exploit the spatial correlation
between pixels.

B. ROSIS-03 Pavia University Data Set

The data set considered in this experiment is a high-
resolution hyperspectral image (610 × 340 pixels) acquired by
the ROSIS-03 sensor on the campus of the University of Pavia,

Italy. A total of 115 spectral bands was acquired in the range
0.43–0.86 μm of the visible and infrared spectrum with a 1.3-m
spatial resolution. The geospatial objects in this image refer to
nine thematic classes, consisting of urban, soil, and vegetation
features. In total, 42 776 labeled pixels are used for validation,
as listed in Table II. The window size of the proposed tensor-
based classifier and PCA-SVM is set empirically to 7 × 7, and
a limited number of 20 pixels per class are randomly selected as
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TABLE II
ACCURACY COMPARISON FOR THE ROSIS PAVIA UNIVERSITY DATA (MEAN AND STANDARD DEVIATIONS OF TEN DIFFERENT EXPERIMENTS ARE GIVEN)

Fig. 7. Classification maps obtained by different methods for the ROSIS Pavia University data. (a) SVM (linear kernel). (b) SVM (RBF kernel). (c) PCA-SVM.
(d) STM. (e) MPCA-STM. (f) Ground-truth reference.

training samples. The reduced dimensionality for MPCA-STM
is chosen as {1,1, 20}. This aspect is discussed in detail in
Section VI-D.

The classification maps obtained by the considered algo-
rithms are shown in Fig. 7, and the corresponding accuracy
scores are presented in Table II. Misclassifications in this case
lie in spectrally similar objects such as meadows–bare soil,
gravel–bricks, which implies that spectral information alone is

inadequate for classification purposes. The accuracies can be
improved using the proposed STM, which actually considers
the intrinsic spectral–spatial data structure. For instance, the
classification accuracies of bare soil and meadows classes
are increased by 2% and 12%, respectively, compared with
RBF-SVM. Furthermore, when redundancy reduction is con-
sidered, MPCA-STM yields 12.1% and 11.6% improvements
in terms of OA, compared with Lin-SVM and RBF-SVM,
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TABLE III
ACCURACY COMPARISON FOR THE HYDICE WASHINGTON DC DATA (MEAN AND STANDARD DEVIATIONS OF TEN DIFFERENT EXPERIMENTS ARE GIVEN)

Fig. 8. Classification maps obtained by different methods for the HYDICE Washington DC data. (a) SVM (linear kernel). (b) SVM (RBF kernel). (c) PCA-SVM.
(d) STM. (e) MPCA-STM. (f) Ground-truth reference.

respectively. Compared with PCA-SVM, STM and MPCA-
STM achieve an accuracy increase of 0.5% and 10.4%, respec-
tively, benefitting from the tensor-based data processing. In this
experiment, it can be also observed that the proposed MPCA-
STM not only exploits the implicit spectral–spatial information
of hyperspectral data via tensor representation but also over-
comes the issues caused by redundancy by incorporating STM
with MPCA.

C. HYDICE Data Set

The HYDICE airborne hyperspectral data flight over the
Washington DC Mall has been also considered in experiments.
These data consist of 210 spectral bands from 0.4 to 2.4 μm,
among which 19 bands were discarded due to water absorption.
The test image contains 280 × 307 pixels with a 5-m spatial
resolution. The reference data consist of 19 332 test samples, as
listed in Table III, from which a limited number of 20 pixels
per class are randomly selected as training samples. The
classification results using Lin-SVM, RBF-SVM, STM, and
MPCA-STM are given in Table III. The corresponding classifi-

cation maps are shown in Fig. 8. In this experiment, the window
size is chosen as 3 × 3 for PCA-SVM, STM, and MPCA-STM.
The reduced dimensionality for MPCA-STM is set to {1,1, 20}.

As shown in Table III, the proposed tensor-based classifiers
can give substantially more accurate results than vector-based
approaches. Compared with Lin-SVM and RBF-SVM, the
improvements of OA achieved by STM are 6.4% and 3.2%,
respectively, whereas the increments obtained by MPCA-STM
are 10.6% and 7.3%, respectively. It can be also observed from
Fig. 8 that Lin-SVM is not very effective for discrimination
between bare soil, roads, and buildings due to their similar
spectral reflectance. The classification of these similar classes is
slightly improved with RBF-SVM. In the case of STM, where
tensors are considered as the basic processing unit and, hence,
the contextual spectral spatial relationship can be considered
adequately, the classification accuracy for the roof is improved
by 14.8% and 6.3%, respectively, compared with Lin-SVM
and RBF-SVM. In this experiment, the proposed MPCA-STM
achieves an increment of 5.3% compared with STM, by
reducing the redundancy in the tensor-based spectral–spatial
domain.
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Fig. 9. (a) PHI Xiaqiao image RGB (70,40,10). (b) Reflectance curves for the classes: C, V, S, G, and O refer to corn, vegetation, soil, grass, and other classes
(including lime and rocks).

TABLE IV
ACCURACY COMPARISON FOR THE PHI DATA SET (MEAN AND STANDARD DEVIATIONS OF TEN DIFFERENT EXPERIMENTS ARE GIVEN)

D. PHI Data Set

The PHI is a Chinese hyperspectral sensor based on push-
broom imaging technique with a focal plain detector, which has
a field of view of 21◦ and a spatial resolution of 1.5 mrad.
The data set used here (346 × 512 pixels) was acquired by
the PHI sensor over a mixed agricultural area of Xiaqiao in
Jiangsu Province, China. The wavelength range for the data set
is from 0.417 to 0.854 μm, and 80 spectral bands are available.
Eleven land cover classes are labeled with 2372 pixels used as
reference based on a field survey. The challenge for this data set
is to discriminate multiple crop types, which have very similar
spectral properties, as shown in Fig. 9. The figure presents
the spectral reflectance curves, where C, V, S, G, and O refer
to corn, vegetation, soil, grass, and other classes (including
lime and rocks), respectively. The classes C41, C42, C43, and
C44 represent different types of corn. In experiments, a limited
number of 20 pixels are randomly selected from each class as
training samples.

In this experiment, STM and MPCA-STM are implemented
with a 9 × 9 window, and the reduced dimensionality for the

MPCA is {1, 1, 30}. From the classification results in Table IV,
it can be seen that (compared with Lin-SVM and RBF-SVM)
the improvements of OA achieved by STM are 11.4% and
9.4%, respectively, when the local contextual information is
included in the classification. Similarly, in this experiment,
MPCA-STM further improves the classification accuracy of the
original STM by removing the data redundancy in the sparse
and hyperspectral tensor space, resulting in the highest accuracy
(OA = 97.35%).

VI. DISCUSSION

The experimental results in the previous section show that
the proposed STM and MPCA-STM can achieve a satisfactory
performance for hyperspectral remote sensing image classifi-
cation. Moreover, they provide more accurate results than the
traditional SVM by constructing a new tensor-based image
feature representation and interpretation framework, which is
particularly appropriate for the intrinsic tensor data structure of
hyperspectral data.
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Fig. 10. Overall classification accuracy (in percentage) of STM and MPCA-STM with different window sizes for tensor representation for (a) AVIRIS,
(b) ROSIS-03, (c) HYDICE, and (d) PHI data sets.

Here, the parameters for the proposed STM and
MPCA-STM, namely, the window size, training samples, penal-
ty coefficient, and tensor dimensionality, are discussed in detail
in order to better understand the tensor-based image processing
system.

A. Window Size for the Tensorial Feature Representation

Fig. 10 shows the classification accuracies of STM and
MPCA-STM with different window sizes for the four con-
sidered experimental data sets. STM and MPCA-STM are
implemented using window sizes varying from 3 × 3 to
9 × 9 by randomly choosing 20 pixels (15 pixels for AVIRIS
data set) from each class for training. In the figure, the dash
lines represent the accuracies obtained by RBF-SVM with the
same training samples. The reduced dimensionality for MPCA
is set to {1,1, 40} (AVIRIS), {1,1, 20} (ROSIS-03), {1,1, 20}
(HYDICE), and {1,1, 30} (PHI), respectively.

From the perspective of image classification, small windows
may not contain sufficient spatial information, whereas large
windows can complicate the analysis with the possibility that
multiple objects or classes are included in the window. In our
experiments, it was found that the window size does not show a
significant influence on the results obtained, demonstrating the
robustness of the tensor image processing system. In addition,

it can be seen that the tensor-based classifiers obtain a better
performance than SVM for different window sizes. Meanwhile,
it can be also seen that MPCA-STM significantly outperforms
the original STM in nearly all the cases since redundancy
reduction is very important for the tensor-based processing.

B. Influence of the Number of Training Samples

To investigate the impact of the number of training samples
on the proposed tensor-based classification framework, differ-
ent numbers of training samples are used in this experiment.
Specifically, for each data set, training samples are randomly
generated from the reference data using a number of training
samples per class that ranges from 5 to 95 pixels and using
the remaining ones for testing. As shown in Fig. 11, the
OA values increase rapidly with the increment of the number of
training samples, and then, the accuracy curves become stable
when 20–40 samples per class are used. In addition, it can be
observed that the proposed tensor-based classifiers outperform
the classic SVM and contextual SVM (i.e., PCA-SVM) in
all cases, particularly for small numbers of training samples.
This reveals that the proposed tensor feature presentation has
a potential for addressing the classification uncertainty with
small numbers of training samples, since tensor-based classi-
fiers yield much better results than vector-based methods when
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Fig. 11. Impact of numbers of training samples for different classifiers in (a) AVIRIS, (b) ROSIS-03, (c) HYDICE, and (d) PHI data sets.

5–10 samples/class are used. In this experiment, it can be also
seen that MPCA-STM outperforms STM no matter how many
training samples are used for training.

C. Penalty Coefficient of the STM

The penalty coefficient c determines the degree by means
of which the classifier penalizes the negative samples in the
training. It is an important parameter for STM since it controls
the generalization of the classifier. Here, a series of experiments
are conducted to investigate how the penalty coefficient c af-
fects the performance of STM and MPCA-STM. Fig. 12 shows
the obtained classification accuracies as a function of the co-
efficient c ∈ [2−16, 216]. From the figure, it can be seen that
the accuracy curves are parabolic. This phenomenon can be
attributed to the fact that a small value means giving less penalty
to misclassified samples, which can mix up margin support
tensors and nonmargin support tensors (i.e., fall on the “wrong”
side of this margin) in a problem that is not linearly separable.
On the other hand, a large value can shrink the classification
margin and result in performance degradation. The optimal
value of the penalty parameter can be determined by cross
validation.

D. Reduced Dimensionality for MPCA-STM

Here, the impact of using reduced spatial and spectral
dimensions (i.e., Dspa and Dspe) for the proposed MPCA-STM
is analyzed. The overall accuracies of MPCA-STM for different
numbers of dimensions (in both spectral and spatial directions)
are shown in Fig. 13, where the x- and y-axes refer to the spatial
and spectral dimensions after reduction, respectively; and the
z-axis denotes the OA (%). The highest accuracy achieved by
the original STM with the optimal parameters is also indicated
with a dot dashed line. Fig. 13 shows that reduced dimension-
ality is an important parameter, which significantly influences
the performance of MPCA-STM. Specifically, we have found
that the 1-D or 2-D principal components are adequate for the
tensor feature representation in the spatial domain. In particular,
when the first spatial principal component is considered, the
performances of the MPCA-STM are much better than
the original STM regardless of the spectral dimensionality.
An exception is the HYDICE DC mall experiment, where
the high classification accuracy (between 80% and 90%)
corresponds to wide spatial dimension (between 1 and 5), but
relatively narrow spatial dimension (between 1 and 50). This
suggests that the spatial redundancy is relatively smaller in this
study area.
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Fig. 12. Analysis of the sensitivity of the penalizing parameter c for the STM on four considered data sets. (a) AVIRIS. (b) ROSIS. (c) HYDICE. (d) PHI.

E. Computational Load

Here, the computational cost for different methods is com-
pared in Table V. From the table, we can conclude that the
moving-window-based classifiers are subject to more process-
ing time than the traditional vector-based ones. It should be
noted that PCA-SVM leads to large computational burden
due to the pixel-by-pixel alignment of the local window.
Additionally, the use of MPCA can remarkably alleviate the
computational burden of STM.

VII. CONCLUSION AND FUTURE LINES

In this paper, we have presented a new tensor-based frame-
work for classification of hyperspectral remote sensing im-
agery. Specifically, we have developed a new multiclass STM,
which extends the traditional vector-based feature representa-
tion and classification strategy such as the SVM to a tensor-
based version. In particular, tensor-based processing is naturally
appropriate for hyperspectral remote sensing imagery, which
has an intrinsic tensor data structure. Furthermore, our work
reveals that information redundancy exists in the sparse and
high-dimensional feature space for hyperspectral data. As a
result, redundancy reduction becomes a crucial issue, particu-
larly when the tensor data representation is considered, since
redundancy can exist in both spectral and spatial directions.

Accordingly, we introduced an MPCA, which is a tensor-
based dimensionality reduction algorithm, and then constructed
a novel MPCA-STM classifier. MPCA-STM takes advantage
of tensor feature extraction and at the same time solves the
problem of information redundancy.

In order to validate the effectiveness of the newly devel-
oped STM and MPCA-STM, a series of experiments were
conducted using four representative hyperspectral data sets,
covering various land cover types (e.g., rural, urban, and
agriculture). In all the experiments, the proposed STM out-
performed the SVM in terms of both quantitative accuracy
scores and visual inspection. Moreover, the interpretation ac-
curacy can be further improved when MPCA-STM is carried
out, since data redundancy is reduced simultaneously in both
the spectral and spatial domains. These results demonstrate
that our proposed methods exhibit potential for hyperspectral
classification.

Hyperspectral data play an important part in quantitative
remote sensing, precision agriculture, detailed land cover map-
ping, and military applications. The tensor-based system pre-
sented in this paper represents a novel method for processing
and understanding hyperspectral imagery, by fully considering
its intrinsic tensor data structure. In the future, we will conduct
further experiments to fully substantiate the potential of the pro-
posed tensor-based system for replacing the traditional vector-
based data representation, providing more accurate analysis
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Fig. 13. Effect of using reduced spatial and spectral dimensionality for MPCA-STM. (a) AVIRIS Indian Pines. (b) ROSIS-03 Pavia University. (c) HYDICE
Washington DC Mall. (d) PHI Xiaqiao.

TABLE V
COMPUTATIONAL TIME (IN SECONDS) FOR VARIOUS METHODS

for remote sensing applications such as classification, target
detection, regression, and change detection. In addition, the
spatial or structural features [57], [58] can be also represented
in a tensor framework.
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