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Abstract—Differential morphological profiles (DMPs) are
widely used for the spatial/structural feature extraction and clas-
sification of remote sensing images. They can be regarded as the
shape spectrum, depicting the response of the image structures
related to different scales and sizes of the structural elements
(SEs). DMPs are defined as the difference of morphological pro-
files (MPs) between consecutive scales. However, traditional DMPs
can ignore discriminative information for features that are across
the scales in the profiles. To solve this problem, we propose scale-
span differential profiles, i.e., generalized DMPs (GDMPs), to
obtain the entire differential profiles. GDMPs can describe the
complete shape spectrum and measure the difference between
arbitrary scales, which is more appropriate for representing the
multiscale characteristics and complex landscapes of remote sens-
ing image scenes. Subsequently, the random forest (RF) classi-
fier is applied to interpret GDMPs considering its robustness
for high-dimensional data and ability of evaluating the impor-
tance of variables. Meanwhile, the RF “out-of-bag” error can be
used to quantify the importance of each channel of GDMPs and
select the most discriminative information in the entire profiles.
Experiments conducted on three well-known hyperspectral data
sets as well as an additional WorldView-2 data are used to validate
the effectiveness of GDMPs compared to the traditional DMPs.
The results are promising as GDMPs can significantly outperform
the traditional one, as it is capable of adequately exploring the
multiscale morphological information.

Index Terms—Classification, feature extraction, feature selec-
tion, morphological profiles (MPs), random forest (RF).

I. INTRODUCTION

A DVANCES in Earth observation technology, leading to
an increased availability of data from different sensors,
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Fig. 1. General workflow of this study.

have opened up new avenues for geospatial information
extraction. Recently, remote sensing data can provide wealthy
information in spatial domains. However, higher spatial res-
olution does not naturally correspond to higher image inter-
pretation accuracies, and their availability poses challenges to
land cover and land use mapping, especially in urban areas.
Due to the complex spatial arrangement and spectral hetero-
geneity even within the same class, conventional spectral-based
classification suffers from a large number of misclassifications
between spectrally similar classes [1]. Moreover, submeter
resolution images are subject to increase of the intraclass vari-
ance and decrease of the interclass variance in the spectral
feature space, leading to decreased class separability in the
spectral domain [2]. Therefore, there is an increased inter-
est and demand in incorporating geometrical information into
the image classification. Specifically, in recent years, a few
studies on spectral–spatial joint feature extraction and classi-
fication have been proposed. One of the state-of-the-art proce-
dures for spatial feature is the gray-level cooccurrence matrix
(GLCM) [3], which is a widely used texture and pattern recog-
nition technique in the analysis of remote sensing data. For
instance, recently, a GLCM based on the sparse coding was
proposed for hyperspectral texture representation and achieved
higher classification accuracy compared to the original GLCM
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Fig. 2. Demonstrations for: (a) MPs; (b) DMPs; and (c) GDMPs.

Fig. 3. Comparison between DMPs and GDMPs for several typical information classes (roofs, roads, trails, and shadow). The same profiles for DMPs and GDMPs
are noted. The sizes of disk-shaped SEs used in this test vary from 2 to 12 with an interval of two pixels.

[4]. The Markov random-field is also an effective way to
take into account spatial information for image interpretation
[5]. Other commonly used spatial features include Wavelet
transform (WT) [6], pixel shape index (PSI) [7], local binary
pattern (LBP) [8]–[10], Gabor filter banks (Gabor) [11], [12],
etc., aiming to explore the spatial correlation and structural
information for enhancing the traditional spectral-based image
classification.

Recently, mathematical morphology, which can effectively
explore the spatial and structural information from the remote
sensing data, has received more and more attention. In [13],
differential morphological profiles (DMPs) were proposed and
applied to remote sensing image segmentation and classifi-
cation. In particular, the segmentation map was obtained by
associating each pixel to the level where the DMP value of
corresponding pixel reaches the maximum. In [14], dimension-
ality reduction, e.g., feature extraction and feature selection
were applied to the DMPs, and the dimensionally reduced

profiles were then fed into a neural network classifier for image
classification. DMPs were further investigated in [15], where
they were interpreted in terms of a fuzzy measurement of the
characteristic size and contrast of each structure. The fuzzy
measure was compared to a set of predefined possibility dis-
tributions to derive a membership degree for various land cover
classes. Morphological texture features were applied to man-
grove forest mapping and species discrimination in [16]. MPs
can be extended for representing image structures for hyper-
spectral images [17], where MPs are computed on the first
few principal components (PCs) of hyperspectral data, called
extended morphological profiles (EMPs). More recently, mor-
phological attribute profiles (APs) were proposed, providing
a variety of attributes (e.g., area, volume, moment of iner-
tia) based on a multilevel characterization of an image using
connected operators [18]. In [19] and [20], extended APs
(EAPs) were presented by calculating the APs on the inde-
pendent components of hyperspectral data. Furthermore, a set
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Fig. 4. Comparison for pattern representation of buildings between DMPs and GDMPs. The sizes of disk-shaped SEs used in this test vary from 2 to 12 with an
interval of two pixels. For instance, the symbol “o4-o2” means the difference of opening-by-reconstruction between scale 4 and scale 2.

of new multiple morphological profiles (MMPs) were created
by integrating the MPs derived from multiple base images
produced by various strategies, including linear, nonlinear, mul-
tilinear image transformation, and manifold learning methods
[21]. A survey on the spectral–spatial classification techniques
based on morphological profiles (MPs) can be found in [22].

Among these MPs, DMPs, regarded as the shape spectrum of
objects, have been proved effective in describing the structural
and spatial features from remote sensing images and achieved
promising performances. DMPs are constructed on the repeated
use of openings and closings by a series of structuring ele-
ment (SE) with increasing sizes. However, DMPs focus on the
differences between consecutive scales with a constant inter-
val, which actually ignore the across-scale information (i.e.,
the difference between any two scales) in the MPs and lead to
underutilization of the discriminative features. In this regard,
therefore, the objective of the proposed generalized DMPs
(GDMPs) is to describe the entire shape spectrums and mea-
sure the difference between two arbitrary scales with a variable
interval from the MPs.

This paper is organized as follows. Section II briefly intro-
duces the principles of GDMPs using geodesic and par-
tial reconstruction, respectively, followed by introduction of
RF classifier for GDMPs feature selection and classification.
Experimental results and the corresponding analysis are pre-
sented in Section III, and Section IV concludes this study with
some remarks and hints at plausible future research.

II. METHODOLOGY

Erosion and dilation are the basic operators of grayscale
mathematical morphology [28]. The operators are applied to

an image with a set of known shapes (e.g., disk, square),
called SEs. Erosion and dilation can be used to define the
commonly used morphological operators: opening and closing.
Morphological opening is to dilate an eroded image aiming
at isolating bright structures, and closing is to erode a dilated
image for suppressing dark structures. In order to preserve the
shape of the objects and introduce less shape noise, geodesic
reconstruction [25], [13]–[15], and partial reconstruction [26]
are used. The proposed GDMPs are defined on the basis of
the aforementioned grayscale morphological processing. The
processing chain of the GDMPs is shown in Fig. 1. Note that
in this study, in order to adequately verify the effectiveness
of the GDMPs, both geodesic morphological reconstruction
[13]–[15], [25] and partial morphological reconstruction [26],
[27] are employed for constructing the GDMPs. Furthermore,
considering the high-dimensional feature space and redundant
information caused by GDMPs, in this study, random forest
(RF) is employed for interpreting GDMPs, i.e., in classifica-
tion. The importance of each element in the entire profiles can
be quantified by using the “out-of-bag” analysis [23], [24]. In
this way, the feature selection is performed and larger weights
are given to the more discriminative features in the profiles.

A. GDMPs

MPs [17], [29] are implemented on a series of morphological
openings and closings with a family of SEs of increasing sizes.
Let γλ(I) and φλ(I) be the morphological opening and closing
for an image I, respectively, with λ representing the radius of
the disk-shaped SE considered in this study. MPs can be defined
using a series of SEs with increasing sizes [Fig. 2(a)]
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Fig. 5. Demonstration and comparison between different morphological reconstruction methods by using opening with disk-shaped SEs of increasing sizes. The
sizes of SE vary from 2 to 8 with an interval of two pixels. The image shown is a subset of the Pavia University image [Fig. 6(b)]: rows 1–3 correspond to without
reconstruction, geodesic reconstruction, and partial reconstruction, respectively.

MPγ = {MPγλ
(I) = γλ(I), ∀λ ∈ [0, n]} (1)

MPφ = {MPφλ
(I) = φλ(I), ∀λ ∈ [0, n]}

with γ0(I) = φ0(I) = I.
(2)

Subsequently, DMPs are defined as the differences of MPs
between consecutive scales [i.e., λ and (λ− 1)] [Fig. 2(b)]

DMPγ = {DMPγλ
(I) = |MPγλ+1

(I)−MPγλ
(I),

λ ∈ [0, n− 1]} (3)

DMPφ = {DMPφλ
(I) = |MPφλ+1

(I)−MPφλ
(I),

λ ∈ [0, n− 1]}. (4)

In general, DMPγ and DMPφ are often concatenated into
a DMP vector in order to represent both bright and dark objects
in an image: DMP = {DMPγ , DMPφ}

Equations (3) and (4) indicate that DMPs are the differences
of MPs between consecutive scales with a constant interval. In
this way, however, the across-scale information in the MPs is

ignored. To obtain scale-span morphological features, GDMPs
[see Fig. 2(c)] are proposed and defined as

GDMPγ = {GDMPγλ
(I)|MPγλ+i

−MPγλ
,

i ∈ [1, n], λ ∈ [0, n− i]} (5)

GDMPφ = {GDMPφλ
(I)|MPφλ+i

−MPφλ
,

i ∈ [1, n], λ ∈ [0, n− i]}. (6)

GDMPs are created on all possible scale intervals in the
MPs. Similarly, GDMPγ and GDMPφ are then concate-
nated into a GDMP vector for classification: GDMP =
{GDMPγ , GDMPφ}.

Examples of DMPs and GDMPs for several typical informa-
tion classes are shown in Fig. 3, where the striking difference
between DMPs and GDMPs can be observed. Notably, from
Fig. 3, it can be also seen that DMPs are the subset of GDMPs,
and the latter can provide more discriminative information.

In addition, in this study, the objective of GDMPs is to fur-
ther enhance the ability of the traditional DMPs for scale and
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Fig. 6. Test data sets and their reference maps. (a) HYDICE DC Mall. (b) ROSIS Pavia University. (c) AVIRIS Indian pines. (d) Worldview-2 Hainan.
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TABLE I
NUMBER OF TRAINING AND TEST SAMPLES (HYDICE DC MALL)

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES (PAVIA UNIVERSITY)

TABLE III
NUMBER OF TRAINING AND TEST SAMPLES (INDIAN PINES)

pattern representation, by considering the scale-span differen-
tial profiles. An interesting example is demonstrated in Fig. 4.
Comparing the results between DMPs and GDMPs, it can be
clearly seen that the objects (in this case, the buildings) were
divided into several parts, corresponding to different scales of
the DMPs. However, by courtesy of the across-scale represen-
tation, GDMPs can describe the buildings more completely.

B. Partial Reconstruction of GDMPs

When using geodesic reconstruction, the whole objects
can be reconstructed if at least one pixel of the object

TABLE IV
NUMBER OF TRAINING AND TEST SAMPLES (WORLDVIEW-2 HAINAN)

Fig. 7. Relationship between “out-of-bag” classification error and the number
of decision trees of RF. It can be observed that after 100–200 trees used in the
forest, classification accuracies become steady.

TABLE V
ACCURACIES (%) FOR DMPS AND GDMPS WITH GEODESIC

RECONSTRUCTION FOR THE DC MALL IMAGE

survives the opening or closing. However, MPs with geodesic
reconstruction may lead to over-reconstruction, i.e., some
objects that disappeared in the MP without reconstruction may
remain present in the MP with geodesic reconstruction. As
shown in Fig. 5(a), the small bright roads on the middle left dis-
appear at a certain scale (SE = 6), but these roads still exist when
the size of SE reaches 6 in Fig. 5(b). To solve this problem, par-
tial reconstruction [26] was introduced. If a pixel is connected
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Fig. 8. RF classification maps for the DC Mall image. (a) Raw hyperspectral image. (b) DMPs. (c) GDMPs.

TABLE VI
ACCURACIES (%) FOR DMPS AND GDMPS WITH GEODESIC

RECONSTRUCTION FOR THE PAVIA UNIVERSITY IMAGE

to another pixel that was not removed after opening or closing
and the distance between two connected pixels is smaller than
a certain value, the pixel is reconstructed. It should be noted

that the geodesic distance, which refers to the length of the
shortest path between the two pixels that lies entirely within the
object, is used to measure the distance between the two con-
nected pixels and determine the amount of reconstruction. As
shown in Fig. 5(c), MPs with partial reconstruction overcomes
the problem of over-reconstruction while preserving the shape
of objects as much as possible.

The GDMPs with partial reconstruction can be similarly
expressed using (5) and (6). Their performance will also be
evaluated by the data sets in this study.

C. Feature Selection of GDMPs

Since the proposed GDMPs depict the entire DMPs, they
necessarily contain a lot of redundancies in the feature space.
Therefore, RFs are used in this research to select the most rel-
evant features from GDMPs. RF are a combination of bagging
classification trees that have demonstrated an excellent perfor-
mance in terms of classification accuracies among a variety of
machine learning algorithms [23], [24]. Each classification tree
of RF is grown using a bootstrapped sample from the orig-
inal training samples. At each node of the tree, a series of
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Fig. 9. Classification maps for the Pavia University image. (a) Raw hyperspectral image. (b) DMPs. (c) GDMPs.

TABLE VII
ACCURACIES (%) FOR DMPS AND GDMPS WITH GEODESIC

RECONSTRUCTION FOR THE INDIAN PINES IMAGE

independent variables are randomly selected, decreasing the
correlation between the trees in the forest. When choosing the
best split from the selected variables at each node, the Gini
index [30], [31] indicating the impurity with the lowest value
is used to select the most important feature. Subsequently,
the most important feature is used to split the corresponding
node. Let T represent training set and Ci represent a certain
information class, Gini index can be written as

∑∑

j �=i

(f(Ci, T )/ |T |)(f(Cj , T )/ |T |) (7)

where f(Ci,T)/ |T| is the probability that the selected pixel
belongs to class Ci.

Each time, a tree is grown into a maximally sized tree
without pruning or stopping rules, forming a combination of
tree classifier, namely RF. Since each tree of RF is grown
from a bootstrapped sample, in general, about one-third of the
observed training samples will not be used when growing a tree.
These observations are called “out-of-bag” samples, forming a
natural test for each tree. Variable importance is represented by
the decrease in accuracy using “out-of-bag” observations when
permuting the values of the corresponding variables. Compared
with other machine learning algorithms, RF not only has a good
performance for classification but also provides insight regard-
ing the discriminative ability of each attribute, which actually
facilitate to understand the performance of GDMPs. In addition,
RF can handle high-dimensional feature space with less compu-
tation and be insensitive to noise in training samples [32], [33].

III. EXPERIMENTS

A. Data Sets

The proposed GDMPs are validated on four widely used and
public remote sensing data sets: hyperspectral digital-imagery
collection experiment (HYDICE) DC Mall, reflective optics
system imaging spectrometer (ROSIS) Pavia University, air-
borne visible/infrared imaging spectrometer (AVIRIS) Indian
pines, and Worldview-2 Hainan, respectively. The four data sets
are discussed in details below.

1) DC data set was collected by HYDICE sensor in August
1995 over the Washington, DC Mall. This data set



1744 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 4, APRIL 2016

Fig. 10. Classification maps for the Indian Pines image. (a) Raw hyperspectral image. (b) DMPs. (c) GDMPs.

TABLE VIII
ACCURACIES (%) OF DMPS AND GDMPS WITH GEODESIC

RECONSTRUCTION FOR THE HAINAN IMAGE

originally contained 210 bands within the range of wave-
length between 0.4 and 2.4 µm. Noisy channels due to
water absorption were removed, resulting in 191 spectral
channels available. The main characteristic of DC data set
is that it covers an urban area, showing high resolution
in both spectral and spatial domains (191 spectral bands
with 2.5-m spatial resolution). Spectral characteristics for
the same information class are complex (e.g., roofs in the
scene are constructed by different materials). However,
spectral characteristics of different land cover classes
(trees-grass, roofs-trails-roads, water-shadow) are similar
due to their overlapped spectral reflectance, making the
classification a challenging task. As shown in Fig. 6(a),
this image consists of 1280× 307 pixels, with 19 332
pixels labeled as a reference for algorithm verification
(Table I).

2) The second data set was acquired over the Engineering
School at the University of Pavia by the ROSIS sen-
sor. This data set originally contained 115 spectral bands

with wavelength ranging from 0.43 to 0.86 µm, with
1.3-m spatial resolution. Some noisy channels have been
removed, resulting in 103 spectral bands. This data set
also shows an urban landscape, with nine classes of inter-
est. The challenges for this data set refer to: 1) discrimi-
nation between trees, meadows, and soil; and 2) discrimi-
nation between asphalt, roofs made of different materials
(e.g., bitumen, bricks), as the spectral reflectance of these
land cover classes are quite similar. As shown in Fig. 6(b),
this image consists of 610× 340 pixels, with 42 776
labeled pixels for model validation (Table II).

3) The third data set was captured over Northwest Indiana by
the AVIRIS sensor. This data set consists of 220 spectral
bands with a wavelength range from 0.4 to 2.5 µm. The
spatial resolution of this data set is 20 m/pixel. This image
covers an agriculture area, and the relative low resolution
makes the classification difficult due to the presence of
highly mixed pixels. In addition, the number of pixels in
the reference data for different information classes is sig-
nificantly different, which also makes the classification
more complicated [33]. As shown in Fig. 6(c), this image
consists of 145×145 pixels, with 10 171 labeled pixels
for model validation (Table III).

4) The last data set is WorldView-2 high spatial resolu-
tion (HSR) data with a 2-m spatial resolution and eight
multispectral bands, over a suburban area in the Hainan
province of China. As shown in Fig. 5(d), this image con-
sists of 600× 520 pixels, with 31 399 labeled pixels for
testing different algorithms (Table IV).

B. Experimental Setup

The parameter settings in the experiments are listed below.
1) Morphological profiles: Disk-shaped SEs ranging from 2

to 12 are used to obtain DMPs and GDMPs on the first
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Fig. 11. RF classification maps for the Hainan image: (a) The raw hyperspectral image, (b) DMPs, and (c) GDMPs.

three PCs of original image with geodesic reconstruction
and partial reconstruction, respectively.

2) Classifier: RF is used for feature selection and classifica-
tion with 200 decision trees, by considering both accuracy
and efficiency (analyzed in Fig. 7).

3) Accuracy assessment: Overall accuracy (OA), average
accuracy (AA), and kappa coefficient (Kappa) computed
from the confusion matrix are used to evaluate the classi-
fication accuracies.

4) Training: 50 samples per class selected from the reference
map are used to train the RF model. The experiments are
repeated ten times with different starting training samples
and the average accuracies are reported.

C. Experimental Results With Geodesic Reconstruction

Test 1: The class-specific accuracies of the HYDICE DC
Mall based on classification of DMPs and GDMPs are
presented in Table V. The classification maps of DMPs and
GDMPs are shown in Fig. 8. In this data set, the raw
spectral-based classification has difficulty in discriminating
between roofs, roads, and trails. The classification accura-
cies can be improved by introducing DMPs and GDMPs.
Specifically, compared to the raw classification, the improve-
ments of OA achieved by using DMPs and GDMPs are 0.7%
and 4.7%, respectively. For a visual comparison, compared to
raw spectral-based classification, the accuracy improvements
achieved by DMPs and GDMPs for each class are shown in
Fig. 12(a). It can be seen that GDMPs outperform DMPs in
terms of the accuracy scores. In particular, GDMPs can improve
the accuracies of roofs significantly (from 81% to 93%), which
can be attributed to exploitation of the entire shape spectrum
considered in the GDMPs.

Test 2: The class-specific accuracies of the Pavia University
in classification based on the DMPs and GDMPs are presented

in Table VI. The classification maps based on DMPs and
GDMPs are shown in Fig. 9. Similarly as in Test 1, DMPs and
GDMPs can obtain satisfactory results, compared with spectral-
based classification (OA is substantially increased from 73.85%
to 86.62% and 96.22%, respectively). It can also be seen that
the GDMPs surpass DMPs on the classification accuracies
significantly as the former considers the entire MPs. In this
experiment, the improvements for the class-specific accuracies
compared to the raw spectral-based classification are shown in
Fig. 12(b). It can be seen that the use of DMPs and GDMPs
provides higher accuracies for all the classes. In particular, the
increments of the accuracies achieved by the proposed GDMPs
are much higher than with the traditional DMPs, especially for
the classes meadows, gravel, bare soil, and bricks.

Test 3: The class-specific accuracies of the Indian Pines
image achieved by using the DMPs and GDMPs are presented
in Table VII. The classification maps for DMPs and GDMPs are
compared in Fig. 10 for a visual inspection. For this data set, the
original spectral-based classification has difficulty in correctly
classifying the 12 information classes, resulting in a relatively
low OA (70.43%). However, the OA is significantly raised to
88.53% and 92.45%, respectively, by employing DMPs and
GDMPs. The accuracy increment for each class is demon-
strated in Fig. 12(c), where a similar phenomenon is observed,
i.e., GDMPs are superior to DMPs interms of classification
accuracies for most information classes. Please note that this
test image is related to an agricultural area, which shows that
the proposed GDMPs are not only effective in urban area but
also in agricultural areas.

Test 4: The class-specific accuracies of the WorldView-
2 Hainan image achieved by using DMPs and GDMPs are
provided in Table VIII. Furthermore, their classification maps
are shown in Fig. 11. For this data set, the OA of the initial
spectral-only classification is 87.08%, subject to the misclassi-
fications between buildings, roads, and soil. The incorporation
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Fig. 12. Percentage of accuracy improvements of each class by the DMPs/
GDMPs (geodesic reconstruction) compared to the raw spectral-based method
in: (a) DC image; (b) Pavia University; (c) Indian Pines; and (d) Hainan.

of the spatial information can increase the accuracy (OA) by
7.23% and 9.51% for DMPs and GDMPs, respectively. For the
improvements of the class-specific accuracy compared to the

TABLE IX
COMPARISON OF OA (%) ACHIEVED BY SPECTRAL BANDS, DMPS, AND

GDMPS WITH PARTIAL RECONSTRUCTION

spectral-based classification [Fig. 12(d)], it can be observed that
once again GDMPs provide better results for all the information
classes than the traditional DMPs, especially for the buildings
(86.04% for the DMPs and 92.82% for the GDMPs), as the pro-
posed GDMPs can describe the structural features in a more
appropriate manner.

D. Experiment Results With Partial Reconstruction

Next, a comparative analysis for DMPs and GDMPs, by
partial reconstruction (DMPs-partial, GDMPs-partial), respec-
tively, was conducted. The results are given in Table IX. From
the results, it can be observed that GDMPs-partial outperforms
the DMPs-partial in all the test data sets. Specifically, compared
to the classification accuracy of DMPs-partial, the improve-
ments for GDMPs-partial in OA are about 2.69%, 4.10%,
3.12%, and 1.3% for the DC Mall, Pavia University, Indian
Pines, and Hainan data sets, respectively. It is shown that the
proposed GDMPs can also provide more accurate classifica-
tion result under the circumstance of the morphological partial
reconstruction.

E. Feature Analysis

In order to analyze the information redundancy of GDMPs
and investigate the relationship between classification accuracy
(OA) and dimensionality of the feature space, feature selection
was conducted according to feature importance quantified by
RF “out-of-bag” error. Fig. 14 shows the relationship between
classification accuracy and the dimensionality of the feature
space which simultaneously consists of hyperspectral space
and GDMPs (geodesic reconstruction). It can be found that
curves become stable when dimensionalities of a feature reach
a certain number and the turning points of the accuracy curves
after which the trend becomes stable are 11, 13, 41, and 45,
corresponding to DC Mall, Pavia University, Indian Pines, and
Hainan, respectively.

Moreover, a detailed analysis on the source of selected
features was conducted.

1) DC Mall: The turning point corresponds to 11 features,
which can obtain similar classification accuracy with the
full feature space [Fig. 14(a)]. Among these 11 selected
features, 10 features are derived from GDMPs, and all the
10 features are from the across-scale MPs that cannot be
obtained by the traditional DMPs.

2) Pavia University: In this test, according to the accuracy
curve [Fig. 14(b)], 12 of 13 selected features are from the
across-scale DMPs (GDMPs).
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Fig. 13. Feature importance analysis at: (a) turning point; (b) first 20-D; and (c) first 50-D in the hybrid feature space selected.

3) Indian Pines: In this case, the first 41 features are selected
and analyzed since they can achieve similar classification
accuracy with the full feature space [Fig. 14(c)]. However,
only 2 of the 41 selected features come from original

spectral data, and the remaining 39 features are generated
by GDMPs. Please note that 32 of these 39 GDMPs refer
to the across-scale MPs, but only 7 features refer to the
traditional DMPs.
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Fig. 14. Relationship between classification accuracy (OA) and the dimensionality of feature space consisting of spectral bands and GDMPs. The so-called turning
points (from which accuracy tends to be stable and comparable to the full feature space) are marker in the accuracy curves.

4) Hainan: In this test, a total of 45 features are selected and
focused on [Fig. 14(d)]. Thirty six of the 45 selected fea-
tures are derived from GDMPs, and 32 of the 36 features
correspond to the across-scale profiles.

The feature contributions are analyzed in Figs. 13 and 14.
The importance of the GDMPs features as well as the spec-
tral signals is computed and ranked based on the Gini index
in the RF decision. The number of each feature sources (spec-
tral, DMPs, GDMPs) that are selected at the turning point, first
20-D and first 50-D, is recorded for comparison. Note that the
turning point (Fig. 14) indicates where the selected features can
achieve a steady classification accuracy that is comparable to
the full feature space.

According to the above analysis, we can draw the con-
clusion that the relevant features from GDMPs play a much

more important role than DMPs and spectral signals in the
classification task, as they are dominant in the selected feature
space in all the test cases. Compared to original DMPs, across-
scale DMPs make it possible to obtain the entire differential
profiles, depicting the full-shaped spectrum of objects in an
image. In addition, through feature selection procedure imple-
mented by RF, a similar classification accuracy can be reached
with much less features compared to the high-dimensional
hyperspectral and GDMPs feature space.

F. Additional Comparison Between DMPs and GDMPs

In this section, we separated DMPs from GDMPs, and clas-
sification was, therefore, conducted on the remaining feature
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TABLE X
ACCURACIES (%) OF DMPS, GDMPS–DMPS, AND GDMPS WITH

GEODESIC RECONSTRUCTION

sets, called “GDMPs–DMPs.” This experiment is to further
test whether the proposed GDMPs have better ability for
feature representation than the traditional DMPs. The results
are reported in Table X. It can be clearly seen that when remov-
ing DMPs from GDMPs, the remaining feature set achieved
very close accuracy to the GDMPs, and still outperformed the
traditional DMPs in all the cases. This phenomenon shows
that GDMPs are an effective and meaningful extension to the
DMPs, for extracting structural features from MPs.

IV. CONCLUSION

In this study, we propose GDMPs for spatial/structural fea-
ture extraction and classification of remote sensing images.
Compared to the traditional DMPs, the main superiority of
GDMPs is that they can describe across-scale DMPs, which is
more appropriate for the multiscale characteristics and complex
landscapes of remote sensing image scenes.

Subsequently, in order to address the information redun-
dancy in the GDMPs, RF is used for feature selection and
classification.

In this research, the important conclusions drawn from the
experimental results are summarized as follows.

1) DMPs and GDMPs can greatly improve the classifica-
tion results, when compared to spectral-only information,
since DMPs and GDMPs can effectively represent the
structural information of an image for discriminating
between spectrally similar classes.

2) The proposed GDMPs show a better performance in terms
of classification accuracy than the original DMPs under
circumstances of both geodesic and partial reconstruction.
It can be attributed to the ability of the GDMPs to provide
scale-span differential profiles, some of which are more
informative for the complex geospatial space and more
discriminative for the spectral-alike information classes.

3) RF is used to interpret the GDMPs as it is capable of
dealing with high-dimensional data with redundant infor-
mation and evaluating the variable importance according
to its “out-of-bag” error. It should be noted that only
a few features selected according to feature importance
can achieve considerable accuracy of the original feature
space.

In summary, it can be concluded that the newly introduced
GDMPs can describe more complete structural information of
an image and can be a standard technique for feature extraction
from remote sensing images. In the future, we plan to discuss
the different methods of dimension reduction implemented for
the proposed GDMPs and attempt more applications based on
GDMPs, such as change detection and object detection.
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