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Technical Note

Road centreline extraction from high-resolution imagery based on
multiscale structural features and support vector machines

XIN HUANG* and LIANGPEI ZHANG

The State Key Laboratory of Information Engineering in Surveying, Mapping and

Remote Sensing, Wuhan University, P. R. China

(Received 12 October 2007; in final form 8 May 2008 )

This paper investigates road centreline extraction from high-resolution imagery.

A novel road detection system is proposed based on multiscale structural features

and support vector machines (SVMs). The salient aspects of the strategy are: (1)

structural features are exploited because road objects are narrow and extensive,

with large perimeters and small radii; (2) the object-based approach is used to

extract multiscale information so as to reduce the local spectral variation caused

by vehicles, shadows, road markings, etc.; (3) the hybrid spectral–structural

features are analysed using the SVM classifier; and (4) multiple object levels are

integrated because a multiscale approach can exploit the rich spatial information

and detect multiscale road objects. Experiments were conducted on two

IKONOS multispectral datasets and the results validated the proposed method.

1. Introduction

Road extraction using remote sensing data is important in applications such as

Geographic Information System (GIS) updating, transportation analysis and urban

planning. Many studies have reported the extraction of road networks using

medium- or low-resolution satellite images (e.g. Landsat Thematic Mapper (TM)

and SPOT). Roads on these images usually appear with widths of one or two pixels

and some details of roads and trails cannot be observed in these low-resolution

images. Therefore, traditional road extraction methods focus on line detection, such

as the ‘snakes’ algorithm (Gruen and Li 1997), Hough transform (Dell’Acqua and

Gamba 2001) and statistical methods (Barzohar and Cooper 1996, Tupin et al.

1998). In recent years, high-resolution satellite sensors with multispectral channels,

such as Quickbird, IKONOS and SPOT-5, have provided richer spatial information;

therefore, high-resolution imagery should potentially be useful for detailed road

detection. However, in these images, small objects can be observed and hence the

noise affecting road extraction increases (e.g. vehicles, shadows, markings and trees

along the roads). Consequently, the spectral signatures of roads become more

heterogeneous; moreover, some spectrally similar classes such as roofs and bare soils

also lead to errors in road recognition. To address these issues, some efficient

algorithms have been proposed recently to extract road networks from high-

resolution imagery, such as adaptive directional filtering (Gamba et al. 2006), a

contextual method based on the Gaussian pyramid (Binaghi et al. 2003), use of a
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mean shift filter (Long and Zhao 2005), and morphological transform (Zhu et al.

2005).

This paper proposes a novel road extraction system based on multiscale object-

based structural features and support vector machines (SVMs). As shown in

figure 1, the system consists of three processing phases: (1) structural feature

extraction; (2) multiscale fusion; and (3) post-processing. Each phase is described

below.

(1) The extraction of multiscale spectral–structural features is based on object-

oriented segmentation. The object-based method can generalize the spectral

information in a spatial neighbour and exaggerate the spectral distinction

between spectrally similar classes (Wang et al. 2004). Furthermore, it can

reduce the spectral variation and noise effects in road regions. In addition to

spectral information, structural features are also extracted for each object so

as to discriminate spectrally similar objects such as roads, roofs and bare

soils. The combination of spectral–structural features is necessary because

spectral information has proved inadequate for object recognition in high-

resolution imagery (Huang et al. 2007).

(2) The road objects for different scales are obtained by interpreting spectral and

structural features using SVMs. A majority voting approach is then used to

integrate the multiscale road information at the decision level.

Figure 1. The flow chart of the proposed road extraction framework.

1978 X. Huang and L. Zhang
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(3) Post-processing includes centreline extraction and connected component

analysis (CCA). The centreline is extracted by using a morphological

thinning algorithm on the binary road objects and CCA is then used to

remove small branches shorter than a user-defined threshold.

2. Methodology

2.1 Object-based spectral and structural feature extraction

In this study, the object-oriented algorithm is used to extract spectral and structural

attributes of road regions. The basic idea is to group the spatially adjacent pixels

into spectrally homogeneous objects first, and then conduct classification on objects

as the minimum mapping units (Yu et al. 2006). The object-based approach is used

for road extraction from high-resolution data because it can reduce the spectral

variations during image segmentation, and at the same time apply geometrical

features to road objects. In this research, the fractal net evolution approach (FNEA)

(Hay et al. 2003) is adopted for multiscale segmentation. It uses fuzzy set theory to

extract the objects of interest, at the scale of interest, segmenting images

simultaneously at both fine and coarse scales (Hay et al. 2003). The FNEA is a

bottom-up region-merging technique starting from a single pixel. In an iterative

way, image objects are merged into larger ones at each subsequent step. The region-

merging decision is made with local homogeneity criteria, which can be defined as

H~
XB

b~1

Wb Nmergesmerge{ Nobj1sobj1zNobj2sobj2

� �� �
ð1Þ

where Wb controls the weight of band b (1(b(B), Nmerge, Nobj1 and Nobj2 represent

the number of pixels within the merged object, object 1 and object 2, respectively.

smerge, sobj1 and sobj2 are the corresponding standard deviations. When a possible

merge of a pair of image objects is examined, the merge is performed when the

heterogeneity H is below the scale parameter T (i.e. H,T). The segmentation

process stops as soon as this condition cannot be met by any possible merge. T is a

measure of the maximum change in heterogeneity, and hence it controls the segment

size. A small-scale parameter will give rise to a small object size on average, while a

large value will lead to a large object size on average.

The averaged spectral value within an object is defined as the spectral attribute of

this object and, for object i, its spectral attribute (SA) is given by

SA ið Þ~ SAb ið Þ
� �B

b~1
with SAb ið Þ~ 1

m

X

p[i

Sb pð Þ, ð2Þ

where p represents a pixel within the object i (1(p(m) and Sb(p) is its spectral

value. The structural attributes for each object are characterized by

Shape Index SIð Þ : SI ið Þ~ e ið Þ
4

ffiffiffiffiffiffiffiffiffi
A ið Þ

p ð3Þ

Compactness COMð Þ : COM ið Þ~ L ið Þ|W ið Þ
A ið Þ ð4Þ

Multiscale object-based road extraction 1979
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Density DENð Þ : DEN ið Þ~
ffiffiffiffiffiffiffiffiffi
A ið Þ

p

1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Xið ÞzV Yið Þ

p ð5Þ

where e(i), A(i), L(i) and W(i) denote the perimeter, area, length and width for object

i, respectively. V(Xi) and V(Yi) are the variances of X and Y coordinates of all pixels

forming the object i. It should be noted that in equation (4), for each object, the
width and length are computed based on a bounding box approximation

(eCognition User Guide 2002; www.definiens-imaging.com). In equation (5),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Xið ÞzV Yið Þ

p
is used to calculate the radius of the object.

The SI aims to describe the smoothness of the image object borders. Road objects

have larger perimeters and small areas; hence they should have larger SI and COM

values. DEN measures the compactness, and the more the form of an object is like a

square, the higher its DEN value. Therefore, road features should have small DEN

values because they are often modelled as continuous and elongated regions. Each

object is characterized by combining the aforementioned spectral–structural
attributes, and the multiscale vector can then be extracted by defining multiple

scale parameters. The hybrid feature set is described as

F T ið Þ~ SAT ið Þ, SIT ið Þ, DENT ið Þ,COMT ið Þ
� �

ð6Þ

where FT(i) is the feature set of object i in scale T, and SAT(i), SIT(i), DENT(i) and

COMT(i) are the spectral–structural attributes.

2.2 The SVM for object-based road extraction

In this study, an SVM (Cortes and Vapnik 1995) was used to interpret the spectral–

structural features and extract multiscale road objects. The SVM is intrinsically less

sensitive to the distribution and dimensionality of the feature space, which makes it

more suitable for complex input than some traditional classifiers. For instance, the
maximum likelihood classifier (MLC) is not capable of achieving satisfactory results

because the complex object-based features cannot be modelled as normally

distributed. Moreover, because of the hybrid feature space and the spectrally

similar objects in the images, the decision boundary should be nonlinear. The SVM

has advantages in nonlinear recognition problems. It finds an optimal linear

hyperplane in a higher dimensional feature space that is nonlinear in the original

input space. The kernel trick avoids direct evaluation in the higher dimensional

feature space by computing it through the kernel function with data vectors in the
input space. To our knowledge, few studies have been reported on the use of the

SVM and object-based structural features for road detection; therefore, it is

interesting to evaluate its effectiveness.

The SVM was originally designed for binary classification; therefore, in this study,

the binary SVM is implemented directly (roads and non-roads). The commonly used

kernel functions are the radial basis function (RBF) and the polynomial function. In

experiments, RBF kernels are used because they have been shown to be effective in

many classification problems. An overview of the application of SVMs to remote
sensing is given by Foody and Mathur (2006).

2.3 Multiscale information fusion

In high-resolution imagery, road features with different scales and sizes (e.g.

highways, small roads and trails) can be observed in detail. As mentioned earlier, it

1980 X. Huang and L. Zhang
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is important to choose an optimal scale parameter for object-based road

recognition. However, a large-scale parameter is better at detecting large and wide

road objects, while a small one is advantageous for detailed objects such as paths

and trails. Therefore, in this study, multiscale object-based features were fused. The

multiscale approach makes road detection more robust because a geostatistical

analysis indicated that there was no single scale that would adequately characterize

the range of textural conditions present in remote sensing images (Coburn and

Roberts 2004).

As shown in figure 1, multiscale spectral–structural features were analysed using

SVMs, and then objects for different scales were labelled as roads or non-roads. Let

P(Tn) be the attribute of a pixel p at scale n, and O(Tn) the label of the corresponding

object level p[O Tnð Þ½ �, and therefore:

P Tnð Þ~1 O Tnð Þ is a road - object

P Tnð Þ~0 else with 1ƒnƒN:

�
ð7Þ

The multiscale information is then integrated by majority voting:

Mp~
XN

n~1

P Tnð Þ ð8Þ

where Mp represents the number of times the pixel p has been detected as a road in

multiscale levels. The fusion rule is defined as

P~
1 Mp§ N=2ð Þ

P TNð Þ else

�
ð9Þ

where P is the final label for each pixel. Equation (9) shows that if the pixel has been

detected as a road by at least N/2 scale levels, it is finally identified as a road.

Otherwise, it is assigned to the attribute in the largest scale level [P(TN)] because

there is a lot of noise in small-scale levels and the road information is more reliable

in the large-scale level.

2.4 Post-processing

Post-processing consists of two steps: pruning small regions and then extracting

road centrelines. Connected component analysis (CCA) was used for small noise

removal. CCA aims to group the pixels into connected components based on pixel

connectivity (eight neighbours) and calculates some geometrical attributes for each

component, such as area, perimeter, Euler number and orientation. In this research,

the maximum length for each component was computed and the noise and small

regions whose maximum length was under a threshold were deleted. In the

experiments, the threshold was set to a small value to delete the noise and at the

same time preserve the detailed roads. Afterwards, the morphological thinning

algorithm was applied to locate road centrelines with a width of only one pixel.

3. Experiments and analysis

The proposed methodology was tested on two IKONOS multispectral datasets with

three visible channels and 4-m spatial resolution. The SVM was implemented using

OSU SVM toolbox 3.0. In equation (1), the weight for each band was set to the same

value. The multiscale parameters T were chosen according to the characteristics of

Multiscale object-based road extraction 1981
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the different sensors and the scenes. In this study, four scales were used for object-

level feature extraction and multiscale fusion: T515, 25, 30 and 40 (accordingly,

N54). The reason for not using a scale value over 40 is that large values cannot

describe the actual shape of objects and can lead to the omission of some small

roads. In the experiments, a multiscale cognitive pyramid algorithm (Binaghi et al.

2003) was implemented for comparison. The cognitive pyramidal approach is based

on concentric windows and pyramidal resampling in an attempt to mimic human

perception in identifying objects of different shapes and structures on different

scales. In both datasets, four windows (363, 767, 13613 and 25625) were used

for multiscale feature extraction and Gaussian pyramidal resampling. A multilayer

perception (MLP) neural network with one hidden layer was then used to classify

the multiwindow pyramids. The accuracy of road extraction is evaluated by both

visual comparison and quantitative analysis. Three accuracy indices are used:

correctness represents the fraction of extracted road length belonging to actual

roads; omission error (OE) and commission error (CE) denote the fractions of pixels

that are wrongly identified as background and that are wrongly classified as roads,

respectively.

The road maps for the first experiment are shown in figure 2, and the accuracies

are provided in table 1. Figure 2(a) is a test image of a rural region where the road

objects show multiscale features with both wide highways and narrow trails.

Moreover, some spectrally similar classes (e.g. small roofs and bare soil) may result

in noise and misclassifications. Figure 2(b) is the manually extracted ground truth;

2(c) is the pixel-level result based on the SVM classification and post-processing;

2(d) is the result of the multiscale cognitive pyramids; 2(e) and 2(f) are object-level

road maps of single scale (T515 and 40, respectively); and 2(g) and 2(h) are the

multiscale fusion results before and after the post-processing, respectively. It can be

seen that the pixel-level results are sensitive to noise and many short spurious

segments exist because the pixel-level approach cannot exploit the rich spatial

information in high-resolution images. At the lower left quarter of figure 2(c), a roof

region is wrongly identified as a road because they show similar spectral responses

and cannot be discriminated using only pixel-level information. Errors can also be

observed in figure 2(d). With respect to the object-based methods, roads appear

more continuous and regular, and most of the noise segments are removed when

spectral–structural attributes are exploited for each object. Comparing figures 2(e),

Table 1. The accuracy indexes of road detection for IKONOS experiment 1.

Feature
levels Pixel level

Cognitive-pyrami-
dal approach

Object-based results
Multiscale

fusionT515 T525 T530 T540

Correctne-
ss (%)

42.6 62.6 73.6 85.1 87.5 71.9 93.1

CE (%) 71.7 78.2 42.6 27.7 20.9 12.9 18.7
OE (%) 57.4 37.4 26.4 14.9 12.5 28.1 6.9

Figure 2. (a) A rural-region test image (535 by 461 pixels with 4-m spatial resolution). (b)
The ground truth road network. (c) and (d) Road maps for pixel-level and multiscale cognitive
pyramid approaches, respectively. (e) and (f) Object-level results for a single scale (T515 and
40, respectively). (g) and (h) The multiscale fusion results before and after post-processing,
respectively.

Multiscale object-based road extraction 1983
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2(f) and 2(h), it can be seen that small-scale segmentation is better at detecting

detailed roads (e.g. zigzagging trails) while the large-scale approach is more effective at

extracting the main roads (e.g. wide highways). As can be seen from figure 2(h), the

multiscale fusion approach provides a more accurate road map than the single-scale

algorithms. The quantitative statistics in table 1 confirm the visual analysis. The

multiscale fusion algorithm gave the highest correctness and lowest omission errors.

The smallest commission error was achieved by T540 because the smaller the number

of extracted roads, the lower will be the probability that they are wrongly identified.

Road extraction results for the second IKONOS test image are provided in

figure 3 and table 2. The test area in figure 3(a) shows a suburban environment,

Figure 3. (a) A suburban test image (400 by 430 pixels with 4-m spatial resolution). (b) The
ground truth road network. (c) and (d) Road maps for pixel-level and multiscale cognitive
pyramid approaches, respectively. (e) and (f) Object-level results for a single scale (T515 and
40, respectively). (g) and (h) The multiscale fusion results before and after post-processing,

1984 X. Huang and L. Zhang
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where the road features include highway, trails and roads between buildings. Similar

conclusions can be drawn from the visual analysis: detailed road regions were

detected effectively using the small-scale approach while the large-scale approach

gave better results for main roads and highways. In this experiment, the multiscale

fusion gave the best results for all three indices, verifying that the information fusion

algorithm is effective in exploiting the advantages in different scales.

Finally, a feature space analysis was conducted to demonstrate the efficiency of

the structural attributes described in this study. Figure 4 shows the feature values

and the separability for spectral and structural attributes. Figures 4(a) and 4(b) were

obtained by averaging the feature values (T530) within about 100 objects for each

class. The statistics were normalized into [0, 255] using a linear stretch. From these

two figures, it can be seen that: (a) the roads, roofs and bare soil have similar

spectral responses and hence the spectral approach often leads to errors and

misclassifications; (b) the SI, COM and DEN attributes are very different between

roofs and other objects; therefore, the road objects are well characterized by the

structural features defined in equations (3), (4) and (5). Figures 4(c) and 4(d) show

the separability analysis between roads and roofs using the Jeffries–Matusita (JM)

distance (Richards and Jia 1999). The values of the JM distance indicate how well

the selected class pairs are statistically separate. A high value indicates that the

feature space can be well separated, while a low value indicates that the feature space

is not well separated. The statistics in figures 4(c) and 4(d) confirm the conclusion

that the structural information can enhance the separability of roads and other

features and hence improve the extraction results.

4. Conclusion

In this study we proposed an effective framework for road centreline extraction

from high-resolution imagery. The novelty of this paper consists in using (1) object-

oriented spectral–structural information for road extraction based on SVMs, and (2)

a multiscale information fusion approach. The road features are considered as

objects instead of pixels; consequently, a more accurate road map can be delineated

by combining both spectral and structural features. On the whole, the experiments

on the two IKONOS datasets show that the multiscale fusion approach gives higher

accuracies than all the single-scale levels and the multiwindow cognitive pyramid

algorithm. The results verified that the proposed algorithm could efficiently exploit

multilevel features and detect road objects of different scales and sizes.
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