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Abstract—There is an urgent need for urban tree classifica-
tion, in order to assist with ecological environment protection
and provide sustainable development guidance for urban plan-
ners. While most of the existing studies have concentrated on tree
crown extraction or tree species identification, only a few studies
have attempted to conduct semantic classification of urban trees
from an urban habitat perspective. The lack of semantic infor-
mation means that it is difficult to meet the needs of ecological
and environmental issues. As such, in this study, a novel three-level
(pixel-object-patch) framework for semantic classification of urban
trees is proposed to categorize urban trees as park, roadside, and
residential–institutional trees. These three categories are cognized
and conceptualized by humans and serve as different ecological
functions in urban areas. Park is important urban greenery ac-
commodated within recreational and cultural facilities. Roadside
and residential–institutional trees are distributed along streets or
in neighborhoods. The framework for the semantic classification of
urban trees includes the following steps: 1) vegetation information
extraction at the pixel level utilizing a spectral vegetation index;
2) vegetation-type classification at the object level employing spec-
tral and textural features; and 3) urban tree classification at the
patch level, where a series of metrics related to area, shape, struc-
ture, and spatial relationship are considered. Two typical Chinese
megacities, Shenzhen and Wuhan, were chosen to demonstrate the
applicability and effectiveness of the proposed method. The re-
sults reveal that the proposed method can achieve a satisfactory
performance, with the overall accuracy reaching 85%. Moreover,
the producer’s and user’s accuracies are generally high for most
tree categories (>80%). The further landscape analysis demon-
strates some general characteristics of the natural landscape con-
figuration: residential–institutional trees show greater fragmenta-
tion and spatial heterogeneity, and park trees show the maximum
physical connectedness and aggregation.
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I. INTRODUCTION

TREES, which are a dominant component of the urban nat-
ural landscape, play an important role in improving the ur-

ban ecological environment, through air filtration, microclimate
regulation, noise reduction, and water quality amelioration [1].
In addition, there is evidence that urban trees can help to enhance
public health [2] and lessen criminal behavior [3]. Therefore,
inventorying the spatial distribution and detailed information
(e.g., species and habitat types) of urban trees is imperative
in decision-making about natural landscape management and
planning [4], [5].

In general, the detailed classification of urban trees can be
conducted via ground surveys, aerial photography, or remote
sensing interpretation. However, conventional ground surveys
can be cost- and time-intensive due to the urban scene complex-
ity, landscape dynamics, and accessibility constraints for private
areas [6], while the direct observation of land cover through
aerial photography or satellite data can enable cost-effective
tree classification. Aerial photographs have been the primary
data source for the detailed classification of urban trees in pre-
vious research [7]–[9]. However, remote sensing satellites can
now acquire data that span temporal and spatial scales with more
spectral information in a more convenient way [10], [11]. These
characteristics of remote sensing data have allowed tree classi-
fication at local [12]–[14], regional [15]–[17], and global [18],
[19] scales. Most of these studies, however, have concentrated on
estimating the vegetation extent at a rough scale using coarse-
or moderate-resolution data, and they have neglected the de-
tailed identification of individual tree crowns. Fortunately, very
high resolution (VHR) remote sensing data have shown great
potential in detailed urban classification [20], [21], and can be
utilized to extract both the locations and the corresponding at-
tributes (e.g., crown size and species) of individual trees. Markov
random field based super-resolution mapping [22], fuzzy logic
approaches [5], object-based approaches [23], and multisensor
techniques [24] have all been applied for tree crown extraction.
Moreover, urban tree species can be classified by fully exploit-
ing the spectral and structural information contained in satellite
data [14], [25]–[27].

Summarizing the existing literature, studies related to tree
mapping have covered subjects spanning tree canopy extraction
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to tree species identification. However, the semantic analysis of
urban trees remains a large gap to be filled. From an urban habi-
tat perspective, the varied spatial patterns and ecological func-
tions of trees allow them to be classified into three main habitat
types: park, roadside, and residential–institutional trees [28].
Trees have been grown to serve various ecological and land-
scape functions in the urban environment. Urban parks serve
many functions, such as providing social services, nurturing
wildlife, and promoting city sustainability. Roadside trees can
screen against noise, absorb vehicle emissions, and capture par-
ticulate matter [29], [30]. Trees in residential and institutional
areas help to improve the quality of life for city dwellers [31].
Moreover, these three urban habitat types vary significantly in
species composition, species diversity, and structure, and differ-
ent policy and management strategies are warranted [32], [33].
Although the importance of habitat type (i.e., park, roadside, and
residential–institutional trees) is widely acknowledged, only a
few studies have focused on this aspect. Jim [34] detailed the
formation and changes of the different urban habitat types dur-
ing the urbanization process. Beyond this, the tree species and
dimensions (i.e., the number of trees and the size of the tree
crown) in the three habitat types have also been analyzed [28],
[32], [33]. However, these studies remain at the stage of concep-
tual definition, or they employed predefined habitat information
obtained by field survey and manual interpretation.

In this regard, we aim to conduct semantic classification of
urban trees (i.e., park, roadside, and residential–institutional
trees) using VHR remotely sensed imagery. These categories
of urban trees are cognized and conceptualized by humans and
serve as different ecological functions in urban areas. In our
study, a three-level (pixel-object-patch) framework exploiting
the spatial pattern variance (e.g., size, shape, structure, and spa-
tial relationship) in park, roadside, and residential–institutional
trees is proposed. At the pixel level, an effective vegetation
index that is suitable for high-resolution remote sensing data
is proposed in order to mask out nonvegetation areas, reduc-
ing the computational burden. The masked images are then fed
into an object-based image analysis process, generating an ac-
curate map of tree and ground vegetation. Subsequently, above
the object-level result, a series of metrics describing the spatial
patterns at the patch level (i.e., the aggregation of connected
vegetation objects) are employed to categorize the three urban
habitat types.

The rest of this paper is organized as follows. Section II
presents the study areas and data sets. Section III details the
proposed framework for tree-type mapping. In Section IV, the
performance and accuracy of the obtained results are examined
and analyzed. A discussion is provided in Section V. Finally,
the conclusion is made in Section VI.

II. STUDY AREA AND DATA SETS

In this study, the urban areas of two typical cities in China,
i.e., Shenzhen and Wuhan, were chosen. Shenzhen, which is
located in southern coastal China, is one of the most developed
megacities in China. This region shows a typical subtropical
climate, with an annual average temperature of 22.4 °C and

annual precipitation of 1933.33 mm. In Shenzhen, the vege-
tation type is representative of subtropical evergreen monsoon
forest, and mainly consists of evergreen broad-leaved forest,
coniferous forest, bamboo forest, shrubs, and grassland [35].
Wuhan, which is located in the middle-lower Yangtze Plain, is
the largest city in Central China. Wuhan is situated in the sub-
tropical monsoon climate zone, with four distinctive seasons.
The annual temperature ranges from 15.8 °C to 17.5 °C and
the annual average precipitation is 1269 mm. In addition, with
regard to the vegetation type, subtropical evergreen broadleaf
vegetation and temperate deciduous broadleaf vegetation are
the dominant vegetation types in this area [36].

In our study, WorldView-2 imagery was used for the urban
tree classification, the resolution of which was 2 and 0.5 m for
the multispectral and panchromatic modes, respectively. In the
image preprocessing steps, the quick atmospheric correction
algorithm and image registration based on polynomial wrap-
ping and nearest neighbor resampling were adopted. For the
geometric accuracy, the root-mean-square error was 0.49 pix-
els. Subsequently, the Gram–Schmidt spectral sharpening tech-
nique followed by data downsampling was adopted to derive a
pan-sharpened 8-band image with a spatial resolution of 1.0 m.
The downsampling was undertaken to decrease the data volume,
considering that the spatial resolution of 1.0 m is fine enough for
categorizing tree types. In addition to the remote sensing satel-
lite imagery, road information generated from openstreetmap
(OSM) was employed as ancillary data. The study areas of Shen-
zhen and Wuhan are shown in Fig. 1(a) and (b), corresponding
to 10529 × 7536 (79.35 km2) and 7190 × 7893 (56.75 km2)
pixels, respectively.

III. METHODOLOGY

From the urban habitat perspective, trees can be categorized
as park, roadside, and residential–institutional (the left column
of Fig. 2) [28]. The three tree categories show different ap-
pearance styles (referring to geometric features), which can be
manifested as groups of interlocking trees, tree corridors, tree
networks, or single trees (the middle column of Fig. 2). These
appearance style differences can serve as the basis for identify-
ing urban tree types. Specifically, the three urban tree categories
can be described from the aspects of size, shape, structure, and
spatial relationship, using remote sensing and GIS data (the right
section of Fig. 2).

Based on the above-mentioned analysis, the proposed tree-
type classification is conducted at three levels, i.e., pixel, object,
and patch, as shown in Fig. 3. The workflow for the proposed
tree-type classification is presented in Fig. 4. First, the vege-
tation is extracted using a vegetation index at the pixel level.
Subsequently, the vegetation extraction result is fed into the ob-
ject level as the mask layer. At the object level, a supervised
method based on object-specific spectral and textural features
is adopted to generate an accurate vegetation-type map (i.e., a
map of the trees and ground vegetation). Finally, patch-level
metrics are considered to differentiate the three tree types: park,
roadside, and residential–institutional.
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Fig. 1. Study areas of (a) Shenzhen and (b) Wuhan.

Fig. 2. Conceptual framework for the tree category identification.

A. Pixel-Level Vegetation Extraction

Vegetation indices derived from the relevant spectral bands
are widely used for the extraction of vegetation information.

The enhanced vegetation index (EVI) was designed to im-
prove the sensitivity in high biomass regions and, at the same
time, minimize soil and atmospheric influences through the in-
clusion of the blue (B) band [37]. The EVI is calculated using
the reflective values of the near-infrared (NIR), red (R), and B
bands [38]:

EVI = 2.5
NIR − R

NIR + 6R − 7.5B + 1
. (1)

Although the EVI is effective in recognizing vegetation, some
cyan roofs can still be mistakenly identified as vegetation due
to their similar spectral characteristic in the NIR (band 7), R
(band 5), and B (band 2) bands (see Fig. 5). Based on this,
we propose the verified EVI (VEVI) to remove the mixed cyan
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Fig. 3. Three processing units: pixel, object, and patch.

Fig. 4. Workflow for the proposed tree-type classification.

roofs by incorporating the spectral values in the green band (G)
as follows:

VEVI = 2.5
NIR − R

NIR + 6R − 3.5B − 4G + 1
. (2)

As shown in Fig. 5, the inclusion of the G band (band 3) in the
VEVI can suppress the signal of cyan roofs and simultaneously
enhance the vegetation signal, thereby performing better than
the traditional EVI. This phenomenon can be attributed to the
fact that the reflectance in the G (band 3) band is much greater
than that in the other visible bands (band 5 and band 2) for
cyan buildings. Ultimately, a vegetation map can be generated
by simply setting a threshold for the index. A single threshold
value is manually tuned based on visually examining the VEVI
values for vegetation and nonvegetation pixels.

B. Object-Level Vegetation-Type Mapping

Although the proposed pixel-level index is effective in ex-
tracting vegetation, it can still introduce some unavoidable errors
due to the increase of the intraclass variance and the decrease
of the interclass variance in the spectral domain of high spa-
tial resolution images. Consequently, the vegetation map needs
to be further refined, and the vegetation types (i.e., trees and
ground vegetation) are classified in order to help the following
tree-type classification. An object-based technique that analyzes

both the spectral and spatial information in each homogeneous
segment is adopted, which has been demonstrated to be effec-
tive in the classification of high spatial resolution data [39], [40].
The proposed object-level process for vegetation-type classifi-
cation (i.e., trees, ground vegetation, and nonvegetation) con-
sists of three steps: 1) image segmentation; 2) object-specific
feature calculation; and 3) classification (see Fig. 6). To ac-
quire the vegetation objects, all eight bands masked with the
pixel-level vegetation layer are used as the input for the mul-
tiresolution segmentation approach [41]. The size, shape, and
compactness of the image objects are the key parameters in the
segmentation. In our experiments, the image segmentation was
conducted using a scale parameter of 100, a shape factor of 0.1,
and a compactness factor of 0.5, which were manually deter-
mined by careful visual inspection. For each segment, the mean
and standard deviation of each spectral band are calculated since
they have the potential to discriminate between vegetation and
nonvegetation. Additionally, the object-specific grey-level co-
occurrence matrix (GLCM) [42] texture is calculated due to its
effectiveness in capturing the textural difference between trees
and ground vegetation objects [23]. The incorporation of both
spectral and textural features means that the different features
can complement each other in classifying trees, ground veg-
etation, and nonvegetation. Furthermore, the texture analysis
of semantically meaningful objects rather than the traditional
square kernels can avoid the selection of the window size, since
image objects are potentially varied in size [39], [42]. Har-
alick [43] originally proposed 14 texture measures calculated
from the GLCM, the selection of which should be case- and
class-specific [44]. Specifically, in our study, homogeneity and
entropy, which measure contrast and orderliness, respectively,
are employed according to the suggestions made in [39] and
[45]. The directionally invariant texture measures are calculated
by taking the average value of the texture results over all four
directions (0°, 45°, 90°, and 135°). The calculation of the object-
based features is followed by classification of the image objects.
The nearest neighbor classifier based on the Euclidean distance
is used in this study because: 1) it is a nonparametric classifier,
as no assumption of the data distribution is required; and 2) it
has good generality and transferability capabilities [46], [47].
In the object-level classification, the simple 1-nearest neighbor
(1NN) classifier is employed since the error rate for 1NN is
never larger than twice the optimal error rate [48]. Based on the
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Fig. 5. Comparison between the EVI and the VEVI in high-resolution imagery: (a) spectral curves of cyan roofs and vegetation; (b) scatter plots for cyan roofs,
vegetation, and nonvegetation in the VEVI-EVI space; and (c) example of vegetation extraction using the two vegetation indices.

Fig. 6. Framework for the object-level vegetation-type mapping.

extracted features (i.e., the mean and standard deviation of the
spectral bands, the textural measures, and the VEVI) and the
1NN classifier, the refined vegetation map, as well as the vege-
tation types (i.e., tree and ground vegetation), can be obtained
as the final product at the object level (see Fig. 4).

C. Patch-Level Tree-Type Mapping

As stated earlier, the semantic categories of trees (i.e., park,
roadside, and residential–institutional trees) from an urban habi-
tat perspective can be identified by considering the size, shape,
structure, and spatial relationship. Based on this, tree-type map-
ping at the patch level is proposed with the following steps.

1) Vegetation Patch Derivation: The accurate vegetation
map derived at the object level is used to generate vegetation
patches. As shown in Fig. 3, “vegetation patch” refers to the
image regions formed by the spatially connected vegetation
objects, and they serve as the basic unit to describe the three
categories, based on the fact that they are aggregated as patches
with different spatial patterns. For vegetation patch derivation,
the adjacent vegetation objects are spatially merged into a patch.
This process is repeated until no adjacent vegetation objects can
be merged.

2) Patch-Level Metrics Calculation: A series of patch-level
metrics that can quantitatively describe the spatial patterns are

calculated [49], [50]. The patch-level metrics considered in our
study include the size and shape of the patch, which are calcu-
lated using FRAGSTATS [51], and the distance to the nearest
major road, depicting the spatial relationship between the veg-
etation patch and road. Details of the patch-level metrics can
be found in Table I. It should be noted that the map of ma-
jor roads was derived from OSM due to its advantage of free
availability [52].

3) Patch-Level Classification: To examine the discrimi-
native ability among the three urban habitat types with each
selected patch-level metric, box plots indicating feature dis-
tribution versus categories are shown in Fig. 7. A satisfactory
discrimination between park and roadside/residential–
institutional vegetation is observed using the patch-level
metrics. In addition, there is considerable overlap between
roadside and residential–institutional vegetation in the boxes of
the area and shape attributes. Meanwhile, a better separability
between roadside and residential–institutional vegetation can
be acquired using the DR attribute. In this regard, a two-stage
classification framework is proposed to classify the park,
roadside, and residential–institutional vegetation. In the first
stage, the patch-level metrics are input into the nearest neighbor
classifier to identify park and roadside/residential–institutional
vegetation. Here, the number of nearest neighbors is optimized
based on the leave-one-out error on training samples. In the
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TABLE I
OVERVIEW OF THE METRICS CONSIDERED IN THIS STUDY

Level Metric Description

Patch Area (AREA) The area of each patch comprising a landscape mosaic.
Perimeter-area ratio (PARA) The ratio of the patch perimeter to area, reflecting the shape complexity.
Shape index (SHAPE) Patch perimeter divided by the minimum perimeter possible for a maximally compact patch of the corresponding

patch area.
Fractal dimension index (FDI) Calculated by regressing the log of the patch perimeter against the log of the patch area.
Related circumscribing circle (RCC) The patch area divided by the area of the smallest circle that can circumscribe the patch.
Contiguity index (CI) A measure of the spatial connectedness, calculated as the proportion of connected cells within a patch.
Euclidean nearest neighbor distance (ENND) Distance of each patch to the nearest neighbor patch.
Distance to road (DR) Distance of each patch to the road.

Class Percentage of landscape (PLAND) Percentage of the landscape occupied by the corresponding class.
Patch density (PD) Number of patches per square meter for the corresponding class.
Perimeter-area fractal dimension (PAFR) A measure of shape complexity for the corresponding class.
Cohesion index (CI) A measure of the physical connectedness of the corresponding class.
Aggregation index (AI) Computed as the ratio between the number of like adjacencies and the maximum possible number of like

adjacencies.
Landscape Shannon’s diversity index (SHDI) A measure of the diversity of the land cover in a landscape.

Fig. 7. Box plots showing the feature distribution of park, roadside, and residential–institutional vegetation at the patch level. The central box indicates the 25th
percentile (closest to zero), the median, and the 75th percentile, and the whiskers show the range of the data.

second stage, a buffer analysis is used to identify roadside and
residential–institutional vegetation on the basis of the spatial
relationship with road. The road buffer zones are constructed
with a buffer size of 25 m, in accordance with the average width
of the boundary line of roads from the “Code for Transport
Planning on Urban Road” [53]. The two vegetation types can be
simply categorized based on whether the vegetation objects fall
inside or outside the buffer zone. Subsequently, the result of the
urban habitat is masked by the map of trees derived at the object
level. In this way, the final product, i.e., the semantic categories
of the urban trees, can be generated. Note that, in an urban envi-
ronment, ground vegetation can serve the same ecological and
landscape function as trees, but may also constitute cultivated
land, aquatic plants, and so on, which is more complicated for
type classification from an urban habitat perspective.

D. Class- and Landscape-Level Analysis

Based on the map of park, roadside, and residential–
institutional trees, we attempt here to conduct a quantitative
analysis of their composition and configuration at the class and
landscape levels, which is important for urban ecological envi-
ronment management and planning. Manual correction of the
classification results is needed to ensure the fidelity of the anal-
ysis. In order to conduct a comprehensive landscape analysis, a
series of class- and landscape-level metrics are considered:

1) percentage of landscape (PLAND);
2) patch density (PD);
3) perimeter-area fractal dimension (PAFRAC);
4) cohesion index (CI);
5) aggregation index (AI); and
6) Shannon’s diversity index (SHDI) [54].
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TABLE II
ERROR MATRIX AND ACCURACY ASSESSMENT FOR THE TREE-TYPE

CLASSIFICATION

Accuracy assessment for Shenzhen

Classified data Reference data Total User’s acc.

Park Residential–institutional Roadside

Park 8 1 0 9 88.9%
Residential–institutional 4 47 7 58 81.0%
Roadside 0 1 42 43 97.7%
Background 0 1 2
#Number of samples 12 50 51
Producer’s acc. 66.7% 94.0% 82.4% Overall: 85.8%

Accuracy assessment for Wuhan

Classified data Reference data Total User’s acc.

Park Residential–institutional Roadside

Park 2 0 0 2 100.0%
Residential–institutional 2 19 2 23 82.6%
Roadside 0 1 23 24 95.8%
Background 0 0 2
#Number of samples 4 20 27
Producer’s acc. 50.0% 95.0% 85.2% Overall: 86.3%

These metrics can reflect the landscape characteristic from
the aspects of composition, fragmentation, shape complexity,
connectedness, aggregation, and diversity [55], [56]. Details of
the above-mentioned metrics can be found in Table I.

IV. RESULTS

In order to evaluate the effectiveness of the proposed method-
ology, the results were validated using a confusion matrix for
the quantitative evaluation and visual inspection for the quality
of the patch boundaries.

A. Accuracy Assessment

For the quantitative evaluation, samples were collected for
the whole study area. The samples were manually interpreted
using the satellite imagery with the help of ancillary information
from the field or online maps. Note that the basic unit for our
collected samples is a patch rather than a pixel. In the Shen-
zhen (Wuhan) study area, the sample sizes for park, residential–
institutional, and roadside trees were 23 (7), 100 (40), and 100
(52), respectively. To allow an accurate estimation of the clas-
sification accuracies, confusion matrices (see Table II) based
on two-fold cross validation with five random splits were gen-
erated. As shown in Table II, overall, the proposed tree-type
classification method can achieve a satisfactory performance.
The overall classification accuracy is 85.8% and 86.3% for the
Shenzhen and Wuhan study areas, respectively. In addition, from
the confusion matrices (see Table II), we can conclude that all
the tree types are classified with acceptable accuracies. For the
park identification, 8 patches out of 12 reference patches are cor-
rectly detected in Shenzhen (66.7%) and 2 park patches out of 4
patches are detected in Wuhan (50.0%). For the Shenzhen data,
47 out of 50 residential–institutional tree patches are correctly

TABLE III
COMPUTATION TIMES FOR THE PROPOSED METHOD (IN SECONDS)

Image subset Pixel Object Patch Total

A 0.1 24.3 27.6 52
B 0.1 18.9 29.7 48.7
C 0.1 23.2 29.4 52.7

identified (94.0%), with 1 patch for each of the misclassified
categories (i.e., park, roadside, and background). Likewise, for
Wuhan, the proposed method correctly identifies 19 roadside
tree patches out of 20 reference patches (95.0%). For the road-
side tree identification, a total of 42 patches for Shenzhen are
identified among 51 reference patches (82.4%). The proposed
method can detect 23 out of 27 patches, indicating a producer’s
accuracy of 85.2%. The user’s accuracies for all the categories
are larger than 80.0%. Furthermore, a part of a patch can be
mistakenly classified due to the fact that roadside/residential–
institutional trees are sometimes spatially connected to park.
This error is introduced at the vegetation patch derivation step.

B. Visual Inspection

For the visual inspection, three image subsets [(A), (B), and
(C)] were chosen from the study areas. The corresponding se-
mantic classification results of urban trees overlaid with the
reference objects are presented in order to evaluate the quality
of the identified patch boundaries (as shown in Fig. 8). The three
image subsets represent contexts that are challenging for map-
ping, with widely differing canopy sizes, different tree types,
and varying spatial patterns. As can be seen from Fig. 8, overall,
a good agreement between the detected tree crowns and refer-
ence object boundaries can be observed, with only a few under-
and over-identification errors. The over-identification can be at-
tributed to over-segmentation in the transition areas between
tree crown and ground vegetation. Some of the tree crowns are
not detected due to their small size or the insignificant contrast
in spectral and textural measures with respect to ground vegeta-
tion. As shown in Fig. 8(B), there is some confusion between the
roadside and residential–institutional trees, due to their spatial
connection. In Fig. 8(C), the trees in the residential area next to
the park are wrongly identified as park trees.

C. Computation Time

Since the computation time is also an important factor of an
algorithm, the computation time of the proposed method is pre-
sented in Table III. The computation times are evaluated for the
three image subsets in Fig. 8, and the computation times at the
pixel, object, and patch level are also presented. The pixel-level
vegetation extraction and patch-level classification were imple-
mented in MATLAB 2012a. The object-level vegetation classi-
fication was conducted via eCognition Developer. The personal
computer used had a 3.07 GHz Intel Core i3 CPU and 16 GB of
RAM. In general, the proposed method has a satisfactory com-
putational efficiency, with computation times of less than 1 min
for the three image subsets. The computation time is related to
the image size, and the numbers of objects and patches to be
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Fig. 8. Instances of the tree-type identification results.

processed. It is worth noting that the computational efficiency
could be further optimized by the use of C programming or
advanced computing devices such as a graphics processing unit.

V. DISCUSSION

A. Comparison With an Object-Based Method

Since no other studies related to the semantic classification
of urban trees were found, a method used for identifying tree
species was employed for the comparison. The object-based
method proposed by Pu et al. [27] that uses eight WorldView-
2 bands plus five normalized difference vegetation indices was
used, which was originally designed for identifying tree species,
and not habitats. For a fair comparison, the training samples
and validation samples developed at the patch level were used,
and the accuracy was evaluated at the patch level by majority
voting. The F-measure (the harmonic mean of the user’s and
producer’s accuracy) for each class and the overall accuracy
(OA) of the proposed and compared methods are presented in
Table IV. In general, the proposed method outperforms the com-
pared method. It should, however, be noted that the great differ-
ence in the accuracies of the proposed method and the method of
Pu et al. [27] is caused by the inconsistent research objectives.
The spectral bands and spectral indices can be useful to distin-
guish roadside trees, but the residential–institutional trees are

TABLE IV
ACCURACIES FOR THE PROPOSED AND COMPARED METHODS

Methods Park Res.–Int. Roadside OA

Proposed 76.2 87.0 89.4 85.8
[27] 55.6 0 90.7 64.1

mistakenly identified as park trees due to their similar spectral
characteristics. The limited ability of the spectral features at the
object level to discriminate the three categories can be attributed
to the complex composition of the different tree species in the
park, roadside, and residential–institutional categories.

B. Effectiveness of the Proposed Method

The existing studies of urban tree mapping have mainly con-
centrated on tree extraction [5], [22], [23] or tree species iden-
tification [4], [9], [14], [25], [57]–[59], and they have neglected
the semantic categorization of urban trees. As such, in this study,
we have proposed a novel method for the semantic classification
of urban trees. The differences between the existing studies and
the proposed method are detailed below.

First, the semantic attributes, i.e., park, roadside, and
residential–institutional trees, are further classified based upon
tree extraction. There have been a large number of studies
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devoted to tree extraction [5], [22], [23]. Among these studies,
the recent study by Ardila et al. [23] formulated a series
of methods that were designed for specific urban contexts
(e.g., individual trees, groups of trees, and trees along roads).
The context-sensitive extraction of tree crown objects can
effectively outline tree crowns, but no attributes (i.e., semantic
categories) of the trees can be generated. In addition, the study
by Zhao et al. [60] focused on roadside tree extraction in a small
study area. In short, to date, no previous studies have addressed
the categorization of urban trees according to their semantic
attributes, i.e., categories cognized and conceptualized by
humans, such as park, roadside, and residential–institutional
trees, which serve as different urban ecological functions.

Second, there are significant differences between the semantic
classification of urban trees (i.e., park, roadside, and residential–
institutional) considered in this study and the tree species classi-
fication (e.g., palm and privet) considered in the existing studies.
The tree categories in our study are defined from an urban habi-
tat perspective. However, the systems for the categorization of
tree species are different in tropical forest [4], mixed forest [58],
rain forest [59], and urban forest [9], [14], [25]. Furthermore,
even for tree species mapping in urban forests, the categories
can be diverse due to the different climate conditions, as well as
the urban planning and management regimes in different cities
[9], [14], [25]. However, the tree types from an urban habitat
perspective can provide unified semantic categories for urban
tree mapping.

Third, different features and processing units are considered.
The three-level (i.e., pixel, object, and patch) system is con-
sidered in order to capture features for urban habitat discrimi-
nation in an effective and efficient way. At the pixel level, the
vegetation mask is generated to avoid the heavy computational
burden of the nonvegetated areas, which is essential, espe-
cially for large-area vegetation mapping. At the object level,
the masked vegetated areas are separated into trees and ground
vegetation using object-specific features (i.e., the spectral and
textual features), which is based on the previous research [39],
[42] into vegetation-type mapping. The object-level processing
is aimed at delineating the tree crowns and removing the false
alarms in the pixel-level vegetation extraction. Subsequently, at
the patch level, the size, shape, structure, and spatial relationship
are considered for the identification of the three urban habitat
types. As a result, the urban habitats aggregated in different
spatial patterns are mapped using remote sensing data, filling a
large gap in the existing studies.

Finally, two typical megacities, Shenzhen and Wuhan, with
coverage areas of 79.35 and 56.75 km2 , respectively, were tested
in this study, which is sufficient to illustrate the robustness and
effectiveness of the proposed approach. Moreover, both quan-
titative and qualitative accuracy evaluations were undertaken,
and indicated a satisfactory performance.

C. Composition and Configuration of the Three Tree
Categories

Quantitative measures were calculated in order to reveal the
characteristics of the landscape composition and the configu-

TABLE V
QUANTITATIVE MEASURES OF THE TREE COMPOSITION AND CONFIGURATION

AT THE CLASS AND LANDSCAPE LEVELS

Shenzhen Wuhan

Park Roadside Res.–Int. Park Roadside Res.–Int.

PLAND 21.42 2.87 6.66 4.42 2.34 17.07
PD 1.29 43.73 196.33 0.33 71.44 296.97
PAFR 1.42 1.44 1.27 1.39 1.45 1.45
CI 99.95 97.64 98.16 99.90 97.57 99.23
AI 98.59 92.34 92.28 98.07 90.56 92.51
SHDI 0.81 0.78

ration of the three tree categories (see Table V). The results
indicate some interesting points:

1) park trees take up 21.42% of the Shenzhen study area,
constituting the dominant natural landscape component,
and, in Wuhan, residential–institutional trees make up the
largest proportion (17.07%) of the three urban habitat
types;

2) there is a more significant discrepancy for PLAND be-
tween roadside trees (2.34%) and residential–institutional
trees (17.07%) in Wuhan than in Shenzhen (the PLAND
for roadside and residential–institutional trees is 2.87%
and 6.66%, respectively);

3) the residential–institutional trees show the largest PD
value, followed by roadside and park, indicating greater
fragmentation and spatial heterogeneity;

4) the PAFRAC yields no clear patterns across over the three
types, but the residential–institutional trees in Shenzhen
(1.27) and the park trees in Wuhan (1.39) have the lowest
dimensions, representing a simpler shape complexity;

5) park trees have the largest values in both the cohesion and
aggregation indices, suggesting the maximum physical
connectedness and aggregation; and

6) the SHDI is 0.81 and 0.78 for Shenzhen and Wuhan, re-
spectively, demonstrating that the natural landscape in
Shenzhen is more diverse.

In conclusion, the composition and configuration metrics
in the two cities show some general characteristics, such as
greater fragmentation and spatial heterogeneity for residential–
institutional trees and maximum physical connectedness and
aggregation for park trees.

D. Limitations of the Proposed Method

There are some limitations to the proposed method. First, the
road network information provided by OSM can help to dis-
criminate between roadside and residential–institutional trees.
Unfortunately, the OSM road networks are not always available
or complete, which may affect the applicability of the proposed
method in other urban areas. However, it should be noted that
volunteered geographic information is the cheapest and some-
times the only source of GIS data, especially in areas where
access to geographic information is constrained due to national
security [61]. Second, the urban habitats are mapped based on
the assumption that they are spatially aggregated patches with
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varied spatial patterns; however, there may be some spatial con-
nectedness between the three urban habitat types. In this sit-
uation, identification mistakes can be introduced in the patch
derivation process, which require manual correction before the
further analysis. Conditional aggregation using certain metrics
will, therefore, be considered in our further research. Third, the
segmentation quality can affect the mapping accuracy to a cer-
tain extent, due to the large within-crown spectral variation. In
addition, the segmentation parameters are sensor- and scene-
specific, indicating that they should be modified when different
data or study areas are used, in order to achieve a segmentation
quality that is as high as possible. Finally, the use of a super-
vised method requires the construction of a sample set that is
representative of the study area, which is a common problem
for the supervised approaches.

VI. CONCLUSION

In this study, a novel pixel-object-patch three-level framework
has been proposed for the semantic classification of urban trees
from an urban habitat perspective using VHR remote sensing
imagery. The results derived from both the Shenzhen and Wuhan
WorldView-2 data sets confirm the potential and effectiveness
of the proposed method. The notable advantages of the proposed
method are as follows:

1) The vegetation extraction at the pixel level is the key step
for reducing the computational cost in the further steps,
since the information index (VEVI) can be used to easily
mask out other urban structures.

2) In line with previous research, object-specific spectral and
textural features are employed for the vegetation mapping.
At the object level, the nonvegetation information is fur-
ther filtered out, and discrimination between trees and
ground vegetation is achieved.

3) A series of patch-level metrics that depict the area, shape,
structure, and spatial relationship are considered for the
urban habitat type classification. The experimental results
indicate that these metrics are effective as they can capture
the intrinsic characteristics of the different appearance
styles.

4) Through the landscape composition and configuration of
the three tree categories, greater fragmentation and spa-
tial heterogeneity for residential–institutional trees is ob-
served, and park trees tend to show the maximum physical
connectedness and aggregation.

The proposed framework allows the user to map park, road-
side, and residential–institutional trees in a generalized way,
which could help to inform policies related to urban ecosys-
tems. However, considerable additional work is needed to test
the robustness and applicability of the proposed method in other
urban areas with different ecological structures. It will also be
necessary to find more effective features or classifiers for the se-
mantic classification of urban trees. In addition, the three urban
habitat types may have varying degrees of urban heat island mit-
igation, and they could be related to socioeconomic factors (e.g.,
real estate prices), which needs to be analyzed quantitatively in
our future work.
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