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On the total least-squares estimation for
autoregressive model
W. Zeng1, X. Fang∗1, Y. Lin2, X. Huang3 and Y. Zhou4

The classical Least-Squares (LS) adjustment has been widely used in processing and analysing
observations from Global Satellite Navigation System (GNSS). However, in detecting temporal
correlations of GNSS observations, which can be described by means of autoregressive (AR)
process, the LS method may not provide reliable estimates of process coefficients, since the
Yule-Walker (YW) equations refer to structured Errors-In-Variables (EIV) equations. In this
contribution, we proposed a Total Least-Squares (TLS) solution with the singular cofactor matrix
to solve the YW equations. The proposed TLS solution is obtained based on the fact that
random errors belong to column space of its cofactor matrix. In addition the proposed solution
does not need any substitution of the squared true parameter vector as done by the current
publications. Finally, we simulate the AR process to prove that our solution is more reliable than
the existing methods.
Keywords: Total least-squares (TLS), Errors-in-variables model, Yule-Walker equations, Autoregressive process, Singular cofactor matrix

Introduction
Global Satellite Navigation System (GNSS) becomes
more popular and important in our life. Although the
positioning of GNSS already reached a high level of accu-
racy, performance of GNSS still need improvement, e.g.
reality-oriented mathematical model in data evaluation.
In comparison with the extensively investigated func-
tional model, the investigation on the stochastic model
is limited. Recently, Luo et al. (2011) identifies the autore-
gressive (AR) process and its relatives for modelling tem-
poral correlations of GNSS observations. However, after
identifying the process to be an AR process, the esti-
mation of the process parameters is not rigorous, since
the classical Least-Squares (LS) cannot provide the accu-
rate results due to the Yule-Walker (YW) equations,
which refers to a structured Errors-In-Variables (EIV)
equation. Note that identifying AR process and estimat-
ing AR parameters are two separate procedures.
In numerical analysis, Golub and Van Loan (1980)

published their seminal paper on the EIV model and
Total Least-Squares (TLS), and the subsequent refine-
ment and extension can be found in van Huffel and Van-
dewalle. To treat the structured EIV model, Toeplitz or
Hankel matrices are primarily discussed (De Moor,
1993, Lemmerling and Van Huffel, 2001, Markovsky
et al. 2005). Several algorithm types have been proposed

including constrained TLS (CTLS, Abatzoglou et al.
1991), the Riemannian SVD (RiSVD, De Moor, 1993)
and the structured total least norm (STLN) algorithms
(Rosen et al. 1996, van Huffel et al. 1996). However, the
current STLS cannot treat the structure of the entire
data matrix including the coefficient matrix and the obser-
vation vector.
In geodesy, the TLS approach to adjust the EIV model

without linearisation has been extensively investigated in
the last decade. Schaffrin and Wieser (2008), Fang
(2011, 2013, 2014a, 2015), Amiri-Simkooei and Jazaeri
(2012) developed the weighted TLS solution, which
allows any positive definite cofactor matrix. The struc-
tured EIV model has been perfectly solved by Mahboub
(2012) for the first time and Mahboub and Sharifi
(2013a, 2013b) presented a constrained weighted total
least squares for the first time by using a weighted TLS
(WTLS) in geodesy for the full variance covariance
matrix without cross covariances. Xu et al. (2012) and
Fang (2014b) used a functional modification to propose
the WTLS solution, which is able to adjust the structured
EIV model. A more generalised solution, the TLS sol-
ution with singular matrices, is presented in Snow
(2012) and Schaffrin et al. (2014) based on the unique sol-
ution condition provided by Neitzel and Schaffrin (2016).
In comparison to the functional modification, the TLS
solution with singular matrices applies a stochastic modi-
fication, where the cofactor matrix describes the linear
structure by error propagation. As a further extension,
Jazaeri et al. (2014) developed the constrained TLS sol-
ution with singular cofactor matrix. Until now, all the
TLS solution with singular cofactor matrix required a
matrix S, which substitutes the product of the true par-
ameter vector and its transpose. This kind of replacement
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originally comes from Grafarend and Schaffrin (1993) for
the Gauss-Markov model with singular cofactor matrix.
In this contribution, we propose a new TLS solution

with singular cofactor matrix, which based on the prin-
ciple that random errors belong to column space of its
cofactor matrix. This TLS solution is a promising tool
to estimate the YW equations, where the structure of the
entire data matrix exists. Finally, a numerical example
to determine AR process parameters is demonstrated.

Ar process and Yule-Walker equations
Awell-known p order AR process can be defined as

x(t) = −
∑p
i=1

jix(t− i)+ 1(t) (1)

where 1(t) is a zero mean white noise sequence with var-
iance of s2

1, ji is the AR parameters to be determined.
According to Stoica and Moses (1997), we have the

relationship of the autocorrelation function:

E[x(t)x(t− k)] = −
∑p
i=1

jiE[x(t− i)x(t− k)]

+ E[x(t− k)1(t)] ⇒ gx(k) = −
∑p
i=1

jigx(k − i)

(2)

where gx(k) is the autocorrelation function and k . 0.
We arrange the above equation in matrix form, which

leads to the well-known YW equations for AR par-
ameters:

gx(0) gx(−1) · · · gx(1− p)
gx(1) gx(0) · · · gx(2− p)

..

. ..
. . .

. ..
.

gx(M − 1) gx(M − 2) · · · gx(M − n)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

j1
j2

..

.

jp

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= −

gx(1)
gx(2)

..

.

gx(M)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (3)

Here, M is the number of equations (M ≥ p). Since the
autocorrelations gx(k) are obtained by the AR sample
sequence, the overdetermined system of equations cannot
give exact solution. We have gx(k) = gx(−k) for a real
ARMA process. Thus, we arrange the vectorised data
matrix, which can be demonstrated to be the linear struc-
ture of autocorrelation function characterised by matrix
C, as follows:

vec Ay
[ ]=vec

gx(0) gx(1) ··· gx(p−1)

gx(1) gx(0) ··· gx(p−2)

..

. ..
. . .

. ..
.

gx(M−1)gx(M−2) ··· gx(M−n)

−gx(1)

−gx(2)

..

.

−gx(M)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

=C

gx(0)

gx(1)

..

.

gx(M)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

Since the variance and covariances of the autocorrela-
tions gx(k) are difficult and even impossible to obtain

(Zhou and Pierre 2005), we assume in this paper that
all autocorrelations have the same variances and
their covariances are neglected. According to Mahboub
et al. (2015) we must first apply a variance propagation
law to the design matrix since it is a non-linear
function of the white noise 1(t). Therefore, the cofactor
matrix for the vectorised data matrix reads

Q = C
∂vec Ay

[ ]
∂1T

∂vec Ay
[ ]
∂1T

( )T

CT .

The YW equations contain the structured data matrix
including the random coefficient matrix and the random
right-hand side vector. Therefore, the YW equations
refer to a structured EIV model and can be adjusted by
a WTLS method for singular cofactor matrix proposed
in following part.

Eiv model with singular cofactor matrix
and its weighted TLS solution
Let the standard EIV model with singular cofactor matrix
be defined by the following functional and stochastic
model:

y− ey=(A− EA)j, (5)

e := vec(EA)
ey

[ ]
= eA

ey

[ ]
� 0

0

[ ]
, s2

0Q
( )

, (6)

In the equation, y and ey denote the observation and the
random error vector. Matrices A and EA are the full-col-
umn rank stochastic coefficient matrix (n×m) and the
corresponding random error matrix. Vector j is the
unknown parameter vector with dimensionm× 1. Vector
e is the extended random error vector. Scalar s2

0 is the
unknown/known variance factor, and Q is the non-nega-
tive definite cofactor matrix.
In the rest of this part, we prove that the true error vec-

tor belongs to the range (column) space of the cofactor
matrix. We calculate the dispersion matrix (with the sym-
bol D[ ]) of (I−QQ−)e:

D[(I−QQ−)e] = s2
0(I−QQ−)Q(I−QQ−)T = 0 (7)

WhereQ− stands for the generalised inverse of the matrix
Q with Q = QQ−Q.
Since the term (I−QQ−)e is error-free, the expectation

of this term shows that

(I−QQ−)e = E[(I−QQ−)e] = 0 (8)

Therefore, the true error vector e is at range space of the
cofactor matrix even if it is non-negative positive definite:

e = QQ−e [ <(Q) (9)

In this sense, we can formulate the error vector e by

e = Qg (10)

and hence the WTLS objective function reads

mingTQg

subject to y− Aj = BQg
(11)

where eTQ−e = gTQg and B := [−jT ⊗ In, In].
In the above formulation, no generalised inverse of the

singular cofactor matrix appears. In this part, we assume
that the cofactor matrix BQBT is also singular but the
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condition rk BQ A− EA
[ ] = n holds. According to the

objective function, the Lagrange target function can be
established by

gTQg+ 2lT (y− Aj− BQg) (12)

where the vector l is the vector of Lagrange multipliers
associated with EIV.
The corresponding Euler-Lagrange necessary con-

ditions will read

1
2
∂F

∂j
|ĵ,g̃,l̂ = −AT l̂+ Ẽ

T
Al̂ = 0, (13)

1
2
∂F

∂g
|ĵ,g̃,l̂ = Qg̃−QB̂

T
l̂ = 0, (14)

1
2
∂F

∂l
|ĵ,g̃ = y− Aĵ + B̂Qg̃ = 0 (15)

with vec(Ẽ
T
A) = QA QAy

[ ]
g̃.

After some arrangements, we write the system of
equations in matrix form from equations (13) and (15)

B̂QB̂
T

A− ẼA

(A− ẼA)
T

0

[ ]
l̂
ĵ

[ ]
= y− Ẽ

T
A ĵ

0

[ ]
(16)

We do not need to calculate g̃, since the interested term ẽ
can be predicted by ẽ = Qg̃ = QB̂

T
l̂. And we do not

separate the l̂ and ĵ in equation (16) since the matrix
B̂QB̂

T
is assumed to be singular. However, the entire

matrix at the left hand side is invertible, hence

l̂
ĵ

[ ]
= B̂QB̂

T
A− ẼA

(A− ẼA)
T

0

[ ]−1

y− Ẽ
T
A ĵ

0

[ ]
(17)

Based on the above formulas, we design the WTLS
algorithm for adjusting the EIV model with singular
matrix as follows:

Algorithm 1: An algorithm to solve the WTLS problem
with singular cofactor matrix
INPUT:
 data matrix A (n×m) and y (n× 1)

 Cofactor matrix Q with dimension
(u+ 1)n× (u+ 1)n

 small positive value 1, for example 1 = 10−10 (depen-
dent on application)

BEGIN
. Initialise a parameter vector, for example

ĵ
0=(ATA)−1ATy

Begin loop
 Compute new unknowns

l̂
i+1

ĵ
i+1

[ ]
= B̂

i
Q(B̂

i
)
T

A− Ẽ
i
A

(A− Ẽ
i
A)

T
0

⎡
⎣

⎤
⎦

−1

y− (Ẽ
i
A)

T
ĵ
i

0

[ ]

 Compute ẽi+1 = QB̂
T
l̂
i+1

 While ‖ĵi+1 − ĵ
i‖ . 1 repeat;

End loop
END
Output:
. The estimate of the parameter vector: ĵ := ĵ

i

Experiments
The main purpose of this part is to substantiate the pro-
posed WTLS algorithm through an AR process simu-
lation. In this simulation, we assume that two AR
parameters exist with true value 0.5 and −0.3. According
to the two AR parameters we generate the AR process
with 1000 observations which are plotted in Fig. 1. The
corresponding autocorrelation function is calculated
with lags from 0 to 10 which is illustrated in Fig. 2.
After we establish the structured YW equations (3), the
proposed Algorithm 1 can be implemented.
The estimated parameters using Matlab function

‘aryule’ and our proposed WTLS algorithm are shown
in Table 1. Aryule (si,p) returns the normalised AR par-
ameters corresponding to a model of order p for the
input array, si. The results indicate that our solution is clo-
ser to the given parameter values, which is presented by
the estimated mean squared errors (MSE) with the for-
mula ‖ĵ− j‖. In addition, we present the predicted
error matrix associated with the data matrix A y

[ ]
in

Table 2. The structure of the predicted error matrix is

1 The generated AR time series with 1000 observations
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completely preserved according to the linear structure
within the YW equations.

Conclusion and outlook
Based on the fact that the errors stand at the column space
of its cofactor matrix, the authors have proposed the
WTLS algorithm with the singular cofactor matrix. The
algorithm is proven as a promising tool to solve the YW
equations in which the data matrix is completely struc-
tured, i.e. even for the design matrix and the observation
vector simultaneously. The experiment shows that the AR
parameter estimates by our method is more reliable than
the existing Matlab function by comparing the MSE.
More accurate results may facilitate us to better under-
standing the GNSS stochastic model. As the further

study, a more rigorous estimation may be investigated
which considers the perturbation covariance information
of the autocorrelation function.

Acknowledgement
This research was supported by the National Natural
Science Foundation of China (41404005; 41474006;
41674002).

References
Abatzoglou, T.J., Mendel, J.M., and Harada, G.A., 1991. The con-

strained total least squares technique and its applications to harmo-
nic super-resolution. IEEE transactions on signal processing, 39,
1070–1087.

Amiri-Simkooei, A.R., and Jazaeri, S., 2012. Weighted total least squares
formulated by standard least squares theory. Journal of geodetic
science, 2 (2), 113–124.

De Moor, B., 1993. Structured total least squares and L2 approximation
problems. Linear algebra and its applications, 188–189, 163–205.

Fang, X., 2011. Weighted total least squares solution for application in
geodesy. PHD Dissertation, No. 294. Germany: Leibniz
University Hanover.

Fang, X., 2013. Weighted total least squares: necessary and sufficient
conditions, fixed and random parameters. Journal of geodesy, 87
(8), 733–749.

Fang, X., 2014a. A structured and constrained total least-squares sol-
ution with cross-covariances. Studia Geophysica et Geodaetica, 58
(1), 1–16.

Fang, X., 2014b. On non-combinatorial weighted total least squares with
inequality constraints. Journal of geodesy, 88 (8), 805–816.

Fang, X., 2015 Weighted total least-squares with constraints: a universal
formula for geodetic symmetrical transformations. Journal of geo-
desy, 89 (5), 459–469.

Golub, G., and Van Loan, C., 1980. An analysis of the total least-squares
problem. SIAM journal on numerical analysis, 17 (6), 883–893.

Grafarend, E.W., and Schaffrin, B., 1993. Ausgleichungsrechnung in line-
aren modellen. Mannheim, Germany: BI-Wissenschaftsverlag.

van Huffel, S., Haesun Park, H., and Rosen, J.B., 1996. Formulation and
solution of structured total least norm problems for parameter esti-
mation. IEEE transactions on signal srocessing, 44 (10), 2464–2474.

Jazaeri, S., Schaffrin, B., and Snow K., 2014. On weighted total least-
squares adjustment with multiple constraints and singular dis-
persion matrices. ZFV - Zeitschrift fur Geodasie, Geoinformation
und Landmanagement, 139: 229–240. doi:10.12902/zfv-0017-2014

2 The autocorrelation function of the generated AR time series

Table 1 The estimated AR parameters and mean squared
errors (MSE)

Matlab output (aryule) WTLS

a1 0.5726 0.5459
a2 −0.3139 −0.2978
MSE 0.0055 0.0021

Table 2 The predicted error matrix
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