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D iverse sensor technologies have allowed us to measure 
different aspects of objects on Earth’s surface [such as 

spectral characteristics in hyperspectral images and height 
in light detection and ranging (LiDAR) data] with increasing 
spectral and spatial resolutions. Remote-sensing images of 
very high geometrical resolution can provide a precise and 
detailed representation of the monitored scene. Thus, the 
spatial information is fundamental for many applications. 
Morphological profiles (MPs) and attribute profiles (APs) 
have been widely used to model the spatial information 
of very-high-resolution (VHR) remote-sensing images. MPs 
are obtained by computing a sequence of morphological 
operators based on geodesic reconstruction. However, both 
morphological operators based on geodesic reconstruction 
and attribute filters (AFs) are connected filters and, hence, 
suffer the problem of leakage (i.e., regions related to differ-
ent structures in the image that happen to be connected by 
spurious links are considered as a single object). Objects 
expected to disappear at a given stage remain present when 
they connect with other objects in the image. Consequent-
ly, the attributes of small objects are mixed with their larger 
connected objects, leading to poor performances on post-
applications (e.g., classification). 

In this article, we introduce morphological partial recon-
struction for spatial-information modeling of VHR urban 
remote-sensing images. The goal of partial reconstruction is 
to extract spatial features that better model the attributes of 
different objects, leading to improved classification perfor-
mances. These methods are applied to three data sets with 
different sensor modalities, resolutions, and properties 
(including panchromatic, hyperspectral, and LiDAR imag-
es), and their effectiveness and robustness are quantitatively 
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and qualitatively evaluated. In addition, the morphologi-
cal partial reconstruction codes introduced in this article 
have been implemented in a MATLAB toolbox (http://telin 
.ugent.be/~wliao/Partial_Reconstruction) that has been 
made available to the community.

MORPHOLOGICAL PARTIAL RECONSTRUCTION
Recent advances in remote-sensing technology have led to 
the increased availability of a multitude of satellite and 
airborne data sources with further enhanced resolution. 
The term resolution refers to spatial, spectral, and tempo-
ral resolution. Additionally, at lower altitudes, airplanes 
and unmanned aerial vehicles can deliver VHR data from 

targeted locations. Remote-sensing acquisitions employ 
passive (optical and thermal range and multispectral and 
hyperspectral) and active devices such as synthetic aper-
ture radar (SAR) and LiDAR. Diverse information of Earth’s 
surface can be obtained from these multiple-imaging 
modalities. Optical and SAR systems map different prop-
erties of the terrain, LiDAR provides the elevation, while 
multispectral and hyperspectral sensors reveal the mate-
rial composition.

Despite the richness of information and the increasing 
resolutions, the automatic interpretation of remote-sensing 
images remains a challenge [1]–[3]. Raw remote-sensing 
data have some limitations in producing precise clas-

sifications of complex scenes 
such as urban areas. For ex-
ample, spectral and/or eleva-
tion characteristics of urban 
land-use classes such as road 
surfaces, parking lots, and 
open areas are so similar that 
they cannot be separated 
by using either raw spectral 
images or raw LiDAR data. 
Consequently, there is an 
increased interest in develop-
ing advanced image-process-
ing algorithms to incorporate 
spatial information for reli-
able image classification.

Automated spatial-infor-
mation extraction employs 
either object-based or pixel-
based approaches. Object-
based methods first group 
the image pixels in a mean-
ingful way via image seg-
mentation [4]. This approach 
provides a natural means 
to incorporate geometrical 
information by calculating 
the different shape charac-
teristics of the segmented 
objects. However, the seg-
mentation process typically 
relies on parameters that are 
highly dependent on the im-
age data at hand and on the 
specific tasks [5], [6]. Pixel-
based contextual approaches 
often employ mathematical 
morphology [7] ranging from  
low-level feature extraction 
(FE) (for size and shape fea-
tures) using MPs [8]–[10] 
over midlevel APs [11], [12] to 
high-level FE with semantic ©
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information indexes [13]–[15]. Recent works demonstrate 
the benefits of using mathematical morphology in modeling 
and extracting geometrical information from remote-sens-
ing images for change detection [16]; urban planning [10], 
[12], [15]; forest management [17]; and risk assessments [18]. 
The applications of mathematical morphology are of inter-
est well beyond remote sensing for various applications of 
image processing [27]–[29] and computer vision [30], wher-
ever the interpretation and analysis of VHR images/video is 
of interest.

Pesaresi and Benediktsson [8] built an MP of an im-
age applying a sequence of opening and closing by recon-
struction operators [7] using a structural element (SE) of 
predefined and increasing sizes. The approach of [9] ex-
tended the method in [8] for hyperspectral data with high 
spatial resolution. The resulting method built the MPs 
on the first principal components (PCs) extracted from a 

hyperspectral image, leading 
to the definition of the ex-
tended MP (EMP). Bellens 
et al. [10] proposed two MPs 
using disk-shaped and lin-
ear SEs to model the width 
and length of the objects in 
the VHR panchromatic ur-
ban imagery. MPs have been 
widely applied to the analysis 
of VHR images, from spatial-
characteristics modeling of 
panchromatic and multi/hy-
perspectral images [8]–[10] 
to height information extrac-

tion of LiDAR data [2], [17], [19], [20] and amplitude and 
phase exploitation of SAR [21]–[23]. The efficiency of us-
ing MPs to extract additional features for applications (e.g., 
classification and target detection) has been reported in 
many recent works [24]–[26]. 

While MPs are appealing due to their efficiency in 
extracting spatial information from VHR remote-sensing 
imagery, they have some limitations when it comes to 
modeling other geometrical features (e.g., textures). Ad-
ditionally, SEs are greatly constrained when modeling 
concepts of the different characteristics of the spatial in-
formation (e.g., size, shape, and homogeneity). Recently, 
Dalla Mura et al. [11] proposed morphological APs for re-
ducing the limitations of the MPs. The APs are obtained 
by applying a sequence of AFs to a gray-level image [11]. 
The AFs are operators defined in the mathematical mor-
phology framework that merge connected components at 
different levels in the image per some measure computed 
on the components (i.e., attributes) [7]. The APs can be 
used to extract features that are not only related to the 
scale of the regions in the image but also relate to any 
measures (e.g., geometrical, textural, and spectral) that 
can be computed on the regions. The advantages of APs 
over MPs have been reported in the literature, including 

the advantage that APs allow more geometrical features to 
be modeled for the analysis of VHR images [11], [12], [26], 
[31], [32]. Applications to multimodal remote-sensing im-
ages have recently been reported in [31]–[44]. 

However, being connected filters, AFs [46]–[48], to-
gether with operators based on geodesic reconstruction 
[7], [49], [50], suffer the problem of leakage [47] (i.e., re-
gions related to different semantic objects in the image 
happen to be connected by spurious links and so are con-
sidered to be a single region), which [10] also refers to as 
over-reconstruction problems. This phenomenon might lead 
to some unexpected results for remote-sensing images. 
For example, the size of objects is not accurately estimated 
when these objects are spatially connected with others in 
the image. In general, smaller objects are wrongly assigned 
the attributes of the larger objects connected to them. This 
is a significant problem for automated content analysis be-
cause, in typical remote-sensing scenes, many objects are 
arranged in a complex manner, i.e., roads are connected 
to many other objects such as parking lots and buildings. 
These connected objects are often wrongly treated as a 
single object by using the connected filters (e.g., AFs [11] 
and geodesic reconstruction [7]). The situation is even 
worse for images with noise that might connect two adja-
cent but nonconnected regions. Clearly, this leads to poor 
classification performances [51].

To overcome the limitation of over-reconstruction 
(i.e., the leakage problem) [11], [50], Ronse [45] defined 
contraction-based connectivity where one can split path-
connected components into multiple fragments by cut-
ting them at these spurious links between wider regions. 
A second-generation connected operator [46] employs a 
single mask image to shape the connected components, 
both those bounded by the mask and those outside of 
it. However, the second-generation connectivity open-
ing with a mask given by an opening or an erosion of the 
original distorts the edges of an object, as analyzed in 
[52]. Later, Ouzounis and Wilkinson [52] improved the 
second-generation connected operator by using an image 
partition instead of a single mask. Their proposed r-con-
nectivity allows more flexibility than mask-based second-
generation connectivity. The approach of [10] proposed 
a partial reconstruction for morphological opening and 
closing, where one reconstructs a pixel (of an object) with 
limited iterations (and not until stability). In our recent 
work [51], we proposed a partial reconstruction for AFs to 
better model and extract more geometrical information 
(including size and shape information) for classifying hy-
perspectral images. The main characteristic of the partial 
reconstruction is that it does not wrongly connect objects 
that should remain disconnected, thus better modeling 
the spatial information of objects in an image. In addi-
tion, with partial reconstruction, the generated profiles 
contain a smaller amount of redundant information, be-
cause the connected objects disappear when the image is 
progressively simplified. The effective performances of 
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using morphological partial reconstruction to extract ad-
ditional spatial information for the analysis of VHR im-
ages can be found in our recent work [2], [10], [20], [34], 
[51], [53], [54]. 

The main objective of this article is to introduce 
morphological partial reconstruction for the analysis 
of VHR images and their applications in the modeling 
of spatial information from different urban remote-
sensing images for classification. In addition, a MATLAB 
application that implements the morphological partial 
reconstruction is available, which can be applicable to 
other disciplines that need efficient methods for analyzing 
VHR images. 

DATA SETS
Four images are used in this article: one synthetic image 
and three real high-spatial-resolution remote-sensing im-
ages. The synthetic image, shown in Figure 1, simulates the 
real situations in typical remote-sensing scenes, where 
many objects are arranged in a complex manner, i.e., 
roads are connected to many other objects such as park-
ing lots (with the same gray level) and buildings (with 
a different gray level). The main objective of this image 
is to illustrate the performances of morphological and  
attribute operators with partial reconstruction to manage  
such connected objects. The second image is the real high-
resolution panchromatic image captured by the IKONOS 
satellite sensor in a Ghent (Belgium) neighborhood. The 
third image is a hyperspectral data set of the University of 
Pavia, Italy, acquired with the Reflective Optics System 
Imaging Spectrometer (ROSIS-03) optical sensor with 
115 spectral bands in the wavelength range from 0.43 to 
0.86  µm and a very fine spatial resolution of 1.3 m by 
pixel. The fourth image is the LiDAR-derived digital-sur-
face model acquired by the National Center for Airborne 
Laser Mapping (NCALM) over the University of Houston 
campus and its neighboring area.
1)	 Ghent Watersportbaan: The panchromatic image was ac-

quired on 5 August 2003 of the Watersportbaan in the 

city of Ghent, Belgium, with a spatial resolution of 1 m. 
The remote-sensing scene, consisting of the full 500 × 
700 pixels, had nine classes. Figure 2 shows the image 
and its ground truth.

2)	 University of Pavia: The hyperspectral image with 610 × 
340 pixels was collected over the University of Pavia, 
Italy, with the ROSIS-03. 
It contains 103 spectral 
channels after the removal 
of noisy bands. The data 
also include nine land 
cover/use classes. Figure 3 
presents false color images 
and their ground truth.

3)	 University of Houston: The 
LiDAR image was acquired 
by NCALM in June 2012 
over the University of Houston campus and the neigh-
boring urban area with a spatial resolution of 2.5 m. 
The whole scene of the data, consisting of the full 349 × 
1905 pixels, contains 15 classes. The LiDAR image and 

Figure 1. An example of some connected objects and their attributes in a synthetic image: (a) the input image, (b) connected objects with 
the same gray level (P1) and a different gray level (P2), and (c) and (d) their divisions. MI: moment of inertia. 
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P1 (Area: 1,132, MI: 0.228)
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Figure 2. The Ghent Watersportbaan image: (a) the panchromatic 
image and (b) ground truth.
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its ground truth are shown in Figure 4. For more infor-
mation, see [2] and [55].
The training and test sets for each data set (shown in 

Tables 1 and 2) are pixels selected from the data provided 
by experts who are knowledgeable about the corresponding 
predefined species/classes. Note that the color in the cell 
denotes different classes in the classification maps. Pixels 
from the training set were excluded from the test set in each 
case and vice versa.

MORPHOLOGICAL FEATURES GENERATED  
BY CONNECTED FILTERS
Mathematical morphology [7], [49], [50] is a popular tool 
in image and video processing and has been widely used 
in diverse tasks such as FE, segmentation, and restoration. 
Successful applications of mathematical morphology in 
remote sensing image processing have been reported in 
[12], [24]–[26], [31]–[34], [36], and [37]. Morphological 
operators [7] and AFs [11] are two of the most widely used 

operators of mathematical morphology in remote sensing 
image processing. 

Morphological operators act on the values of the pix-
els according to transformations that consider the pixels’ 
neighborhood (with a given size and shape). The basic 
operators are dilation and erosion [7]. These operators are 
applied to an image with a set of known shapes referred 
to as the SEs. In the case of erosion, a pixel takes the mini-
mum value of all the pixels in its neighborhood defined 
by the SE. By contrast, dilation takes the maximum value 
of all the pixels in its neighborhood. Dilation and erosion 
are usually employed in tandem, either with the dilation 
of an image followed by erosion of the dilated result or 
with erosion of an image followed by the dilation of the 
eroded result. These combinations are known as morpho-
logical opening and closing.

AFs, such as attribute openings and closings [11], are 
connected operators, defined in the mathematical mor-
phology framework, that process an image by merging its 
connected components at different gray levels. Connected 
components are the flat zones where the image-constant 
intensity is continuous. An opening acts on bright objects 
(for LiDAR data, the bright regions are areas with high el-
evation such as the top of a roof) compared with their 
surroundings; closings, on the other hand, act on dark 
(low height in the LiDAR data) objects [2]. For example, 
an opening merges bright objects that are smaller than the  
threshold into their background, while the dark objects 
are left unchanged. The opposite operation of the open-
ing is the closing, which removes small, dark objects 
while leaving bright objects unchanged. Morphological 
features are typically generated by applying a sequence of 
morphological operators or AFs on an image, where MPs 
contain low-level features (size and shape information) 
and APs can model middle-level features (e.g., homoge-
neity and textures).

MORPHOLOGICAL OPERATORS BY RECONSTRUCTION
By increasing the size of the SE, more and more objects are re-
moved, as shown in Figures 5–7. However, aside from deleting 
objects smaller than the SE, classical morphological open-
ings and closings degrade borders and deform the shapes 
of the objects, as shown in Figures 5(a), 6(a), and 7(a), and 
round the corners of rectangular objects. To preserve the 
shapes of objects, morphological openings and closings by 
reconstruction (i.e., geodesic reconstruction [49], [50]) are 
generally the tools of choice [56], [57]. With geodesic re-
construction, the whole object is reconstructed if at least 
one pixel of the object survives the opening or closing. Two 
pixels are considered to belong to the same object if they are 
connected in the original image (or mask). The image on 
which the reconstruction is performed is called the marker. 
The geodesic dilation (of size 1) of the gray-scale marker 
image f and the mask image g is defined as

	 ( ) ( ) ,f f gg
1 1 /d d= � (1)

Figure 4. The University of Houston image: (a) LiDAR data and (b) 
ground truth.

(a)

(b)

(a) (b)

Figure 3. The University of Pavia hyperspectral image: (a) LiDAR data 
and (b) ground truth. 
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Table 1. INFORMATION CLASSES AND TRAINING-TEST SAMPLES  
FOR the GHENT WATERSPORTBAAN AND THE UNIVERSITY OF PAVIA. 

Ghent Watersportbaan UNIVERSITY OF PAVIA

Class Name 
Number of  
Training SETS

Number of 
Test SETS Class Name 

Number of  
Training SETS

Number of 
Test SETS

Water 255 34,696 Asphalt 548 6,641 

Grass 278 34,484 Meadows 540 18,649 

Trees 232 40,516 Gravel 392 2,099

Dark roof 303 32,899 Trees 524 3,064 

Red roof 177 1,331 Metal sheets 265 1,345 

White roof 190 2,678 Soil 532 5,029 

Road 266 27,679 Bitumen 375 1,330 

Other man-made 350 40,532 Bricks 514 3,682 

Shadows 213 10,013 Shadows 231 947 

Table 2. INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE UNIVERSITY OF HOUSTON. 

Class Name 
Number of 
Training SETS

Number of 
Test SETS Class Name 

Number of 
Training SETS

Number of 
Test SETS Class Name 

Number of 
Training SETS

Number of 
Test SETS

Grass healthy 198 1,053 Grass stressed 190 1,064 Grass 
synthetis

192 505 

Tree 188 1,056 Soil 186 1,056 Water 182 143 

Residential 196 1,072 Commercial 191 1,053 Road 193 1,059 

Highway 191 1,036 Railway 181 1,054 Parking lot 1 192 1,041 

Parking lot 2 184 285 Tennis court 181 247 Running  
track

187 473 

(a)

(b)

(c)

Figure 5. The openings with an increasing SE size on a syn-
thetic image. The scales of the SEs vary from two to six with a 
step increment of two. (a) Without reconstruction, (b) geodesic 
reconstruction, and (c) partial reconstruction.

(a)

(b)

(c)

Figure 6. The openings with an increasing SE size on the University of 
Houston LiDAR data (part of the result). The scales of the SEs vary from 
two to six pixels with a step increment of two pixels. (a) Without recon-
struction, (b) geodesic reconstruction, and (c) partial reconstruction.
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where 1d  represents elementary dilation [49] with the SE of 
elementary size and /  represents the point-wise minimum. 
To perform the reconstruction by dilation ( )R fg  of f  with g 
as the mask, we use the operator iteratively until no further 
change occurs:

	 ( ) ( ) ( ) .limR f f fg n g
n

g g g
1 1 1

until stability

gd d d d= =
"3 1 2 3444 444

� (2)

An opening by reconstruction c of an image f  can be 
obtained by first performing a regular opening v on the im-
age f  and then using the result of this opening as the marker 
image and the original image as the mask for the reconstruc-
tion process:

	 ( ( )) .R ffc v= � (3)

Closing by reconstruction z  can be defined by dual-
ity (i.e., first invert the image, then perform the opening 
by reconstruction, and, finally, invert the result). With 
reconstruction, we can better preserve the shapes of the 
objects, as shown in Figures 5(b), 6(b), and 7(b). As the 
scale increases, more and more small objects disappear. 

Morphological operators by reconstruction delete objects 
smaller than the SE without altering the shape of those 
objects and reconstruct connected components from the 
preserved objects. In other words, the pixels in the object 
take on the value of their surroundings. We use the term 
scale of an opening or closing to refer to this size. A vec-
tor containing the pixel values in openings and closings 
by the reconstruction of different scales is called the MP. 
The MP of size p (number of scales) can be defined as

	 ( ) [ ( ), , ( ), , ( ), , ( )] .MP f f f f f f( ) ( ) ( ) ( ) ( )p p p1 1f fz z c c= � (4)

The MP carries information about the size and shape of 
objects in the image.

ATTRIBUTE FILTERS
The AFs are morphological transformations that process an 
image per a criterion. A generic criterion P can be defined as 
a mapping of the set C of values : { }.P C ,false true"  The AFs 
process connected components per the criteria that evalu-
ates how an attribute A compares to a given reference value
m in a binary predicate P  [e.g., ( ) ( ) ,P C A Ci 2 m=  with Ci  

(a)

(b)

(c)

Figure 7. The closings with an increasing SE size on a Ghent Watersportbaan panchromatic image. The scales of the SEs vary from two to 
ten pixels with a step increment of four pixels. (a) Without reconstruction, (b) geodesic reconstruction, and (c) partial reconstruction. 
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being the ith connected component of the upper- or lower-
level sets of an image]. If P  holds true, then the region is 
kept unaltered; otherwise, the region can be set to the gray-
scale value of the adjacent region with the closest gray level, 
thereby merging the connected components. When the re-
gion is merged to the adjacent region of a lower (or greater) 
gray level, the operation performed is a thinning (or thick-
ening). A criterion is said to be increasing if it is verified 
for a connected component, in which case the criterion’s 
components will also be increasing. This property leads to, 
e.g., ( )P C truej =  when ( )P C truei =  for any .C Cj i3

When the criteria (e.g., the area and volume associated 
with increasing attributes) are increasing, the attribute thin-
ning and thickening transformations are also increasing, 
leading to attribute opening and attribute closing [58], re-
spectively. For nonincreasing criteria (e.g., gray-level homo-
geneity, shape descriptors, and region orientation), we recall 
that different outputs of the filter are obtained according to 
the filtering rules selected [48]. If P  holds true for a con-
nected component, it will be merged to a darker or brighter 
surrounding region according to the transformation. Given 
a sequence of ordered threshold values { , , , }n1 2 fm m m m=  
(i.e., ,i j1m m=  with ),i j1  an AP is obtained by applying a 
sequence of attribute thinning and thickening operations 
to the gray-scale image ,f

	 ( ) { ( ), , ( ), , ( ), , ( )},AP f f f f f fn n1 1f f{ { t t= � (5)

where i{  and it  denote the attribute thinning and thicken-
ing transformations with reference values ,im  respectively. 
AFs process the image without distorting or inserting new 
edges but only by merging existing flat regions [7], as shown 
in Figures 8(a) and 9(a). Compared to MPs, the APs permit 
the modeling of other characteristics (e.g., geometrical, tex-
tural, and spectral) rather than the size of the objects. We 
refer the reader to [11] for further details. 

However, as connected operators, both geodesic recon-
struction [49] and AFs [11] suffer the same leakage effects 
(again, called over-reconstruction in [10]). Some objects that 
should disappear at a certain threshold, however, remain 

present after filtering, as shown in Figures 5(b), 6(b), 8(a), 
and 9(a). In LiDAR data [see Figure 6(b)], the residential 
roof and trees are connected and are similar in elevation 
characteristics; consequently, they are treated as a single ob-
ject after reconstruction. As a result, different objects (even 
though they are in different categories) are considered as 
a single object if, in the original image, they are connected 
through a narrow line in the image. In typical remote-
sensing scenes, many objects are arranged in a complex 
manner (such as the image in Figure 1), i.e., roads are con-
nected to many other objects such as parking lots (with the 
same gray level) and buildings (with a different gray level). 
For example, objects ,P P11 21  in Figure 3 are expected to disap-
pear in the image when the sizes of the area attributes are set 
to 350 and 450, respectively [see Figure 8(a)]. However, they 
remain present even when the area size is set to 800 in the 
original attribute thinning and thickening [11]. While these 
two objects are assumed to remain the same with the MI [11] 
attributes of 0.3 and 0.8, they, however, disappear at MI val-
ues of 0.2 and 0.3, respectively [in Figure 9(a)]. This means 
that, in MPs/APs, the pixels from the road are not character-
ized by the attributes (e.g., size, area, and MI) of the road but 
by the attributes of the whole connected object (and these 
connected objects belong to different classes). Clearly, this 
leads to a poor performance on post applications.

MORPHOLOGICAL FEATURES WITH  
PARTIAL RECONSTRUCTION
To overcome the leakage effects, partial reconstruction is 
used for morphological operators and AFs. A MATLAB ap-
plication that implements partial reconstruction for both 
morphological operators and AFs is available at http://telin 
.ugent.be/~wliao/Partial_Reconstruction/.

MORPHOLOGICAL OPERATORS BY  
PARTIAL RECONSTRUCTION
In the geodesic reconstruction process, a pixel is recon-
structed if it is connected to another pixel that was not de-
leted after the opening or closing. In other words, a pixel 
is reconstructed if the geodesic distance d  in the mask g of 

(a)

(b)

Figure 8. The attribute thinning with an area attribute on a syn-
thetic image. From left: the size of the area was set to 200, 350, 450, 
600, and 800 pixels. (a) Original attribute thinning and (b) attribute 
thinning with partial reconstruction.

(a)

(b)

Figure 9. The attribute thinning with an MI attribute. From 
left: the value of the MI was set to 0.15, 0.17, 0.2, 0.3, and 0.8. 
(a) Original attribute thinning and (b) attribute thinning with 
partial reconstruction.



                                           ieee Geoscience and remote sensing magazine    june 201716 

that pixel is less than infinite to at least one of the pix-
els in the marker image f [49], [50]. Generally, a geodesic 
distance is the minimum distance between two points 
on the Earth’s surface. Note that this is not the length of 
a straight line (Euclidean distance) but the length of a seg-
ment of a circle. Similarly, the geodesic distance between 
two pixels is the length of the shortest path between those 
pixels. The path is not arbitrary, but it must be a subset of the 
foreground pixels of the image.

If we use the Euclidean distance (instead of the geode-
sic distance), a large object can influence a large part of a 
smaller object if both objects lie close to each other, even 
if the connection between them is very narrow. With 
the geodesic distance, only a small area of the smaller 
object near the connection is influenced. The study in 
[10] proposed a novel partial reconstruction in which a 
pixel is reconstructed if the geodesic distance is smaller 
than .d 31  Opening with partial reconstruction [10], cr  
is defined as

	 ( ( )).ff
dc d v=r � (6)

The partial reconstruction is the same as a geodesic dila-
tion of size d  [49], [50]. The easiest way to implement this 
is by doing successive elementary geodesic dilations, i.e., it-
erate (2) only d  times. This is a dilation with an elementary 
SE followed by an intersection with the mask. In gray-scale 
morphology, the intersection of two images is the mini-
mum of the two gray-scale values for each pixel. Instead 
of using the original image, we can obtain the mask for 
partial reconstruction by dilating the opening with a disk-
shaped SE with radius d  followed by the intersection with 
the original image. 

For rectangular objects and with disk-shaped SEs, 
the geodesic distance can be set to d R2 1= -^ h  for 
partial reconstruction with R as the radius of the SE, but 
the corners of objects are not completely reconstructed 
when .d R2 11 -^ h  In contrast, partial reconstruction 
with d R2 12 -^ h  completely reconstructs the corners of 
rectangular objects. Many objects of interest in remote 
sensed images have a near-rectangular shape. Therefore, 
we use a value of d near this value [e.g., ]d R2 2 1= -^ h  
for partial reconstruction. For more details on morpho-
logical filters with partial reconstruction, we refer the 
reader to [10].

ATTRIBUTE FILTERS WITH PARTIAL  
RECONSTRUCTION
To overcome the leakage effects, AFs with partial recon-
struction (AFsPR) [51] first separate connected objects 
(e.g., roads and parking lots) of a binary image (i.e., at one 
gray level) into two disjoint parts by using morphologi-
cal filters with partial reconstruction [10]. We define two 
binary images to include each part of the separated ob-
ject. Then AFs [11] are applied to these two binary images. 
Finally, AFsPR integrate all of the residuals of the filtered 

images and obtain the final output image by repeating 
this for all gray levels. Suppose that fi  is the binary in gray 
level i  and, for opening, fi  is referred to the upper-level 
set f f ii 2=^ h while, for closing, fi  is the lower-level set 

.f f ii #=^ h  A connected object Pk  (kth connected compo-
nent) in fi  can be separated into two different adjacent and 
nonoverlapping parts Pk1  and Pk2  that satisfy P P Pk k k1 2,=  
and .P Pk k1 2+ Q=

A binary image fi  can be partitioned in its connected 
components (here, we refer to foreground) , , ,P P1 2 f  such 
that fi  is the union of all Pk  and each Pk  is a connected 
component with P Pk l+ Q=  if .k l!  Let jcr  and jzr  denote 
morphological opening and closing operators by partial re-
construction using a structuring element of size j. For open-
ing, morphological opening with partial reconstruction is 
first applied in the binary image fi  (at gray-level i). As the 
size of the SE j increases, more and more small, bright ob-
jects disappear. Two binary images, fio1  and ,fio2  are defined 
as the filtering outs at scale j. ( )f fi

o j
i1 c= r  contains one part 

of the connected objects Pk1  in ,fi  and f f fi
o

i i
o

2 1= -  includes 
all disappeared objects of fi  (i.e., the other parts of the con-
nected objects Pk2  of ).fi

In an opening, for gray-level ,i  we apply the binary 
attribute opening { [58] on both binary images of fio1  and 
fio2  and integrate the remaining objects into one filtered 
image :fio

	 ( ) ( ).f f fi
o

i
o

i
o

1 2{ {= + � (7)

When repeating (7) at each gray level, the attribute thinning 
with partial reconstruction is defined by the maximum 
gray level of the results of the filtering for each pixel x as

	 ( )( ) { : },maxf x i x fio!{ =mr � (8)

where { , , , }n1 2 fm m m m=  is a sequence of ordered criteria, 
which is the same as defined in [11]. The attribute thicken-
ing with partial reconstruction tr  can be straightforwardly 
extended from the definition of thinning. We refer the read-
er to [51] for further details. 

Morphological/AP with partial reconstruction (APPR) 
can be obtained similarly as in (4) and (5) by replacing the 
connected filters by the filters with partial reconstruction. 
Thus, the partial reconstruction [10] solved the problem 
of over-reconstruction while preserving the shape of ob-
jects as much as possible and made a great improvement 
in the classification of remote sensing imagery [2], [20], 
[51], [53], [54]. As shown in Figures 5(c), 6(c), and 7(c), 
the shapes of objects are better preserved with partial 
reconstruction compared to the MP without reconstruc-
tion. However, some of the more complex shapes are not 
as well preserved as with connected f ilters. Yet many 
small objects that remain present in the profile gener-
ated by geodesic reconstruction and AFs now disappear 
when using the filters with partial reconstruction. We 
can see objects disappear per their real attribute values in 
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Figures 8(b) and 9(b). This is because in remote-sensing 
(urban) scenes, different objects lie closely together, and, 
because of noise and other effects, different objects are 
often connected by a sequence of pixels with similar (or 
more extreme) pixel values. Therefore, geodesic recon-
struction and AFs consider all those connected objects as 
a single object, and objects only disappear when the SE 
does not fit the broadest part (for AFs, we take the area 
attribute as an example) of the connected object, even 
though this part might be far away from the actual ob-
ject. Partial reconstruction reconstructs only the immedi-
ate surrounding area of the surviving part. The edges of 
simple objects are reconstructed well, but a full retrieval 
of complex elongated shapes might not be obtained. For 
simple objects such as rectangles, geodesic reconstruction 
and AFs are complete, because, in urban remote-sensing 
scenes, most objects are not very complex and the partial 
reconstruction of rectangular-shaped objects has been 
well suited.

EXTENSION TO THE ANALYSIS OF  
HYPERSPECTRAL IMAGERY
When dealing with hyperspectral imagery (or other vecto-
rial images), the high dimensionality of hyperspectral data 
and the redundancy within the bands make the generation 
of MPs/APs based on each spectral band a time-consum-
ing task. To overcome this problem, FE is first used as a 
preprocessing step to reduce the dimensionality of these 
hyperspectral data and reduce the redundancy within the 
bands. Then, morphological/attribute processing is ap-
plied on each extracted feature band independently. The 
effect of different FE methods on extracting features from 

the hyperspectral data to build MPs/APs has been dis-
cussed in several studies [54], [62], [63]. 

An MP/AP consists of the opening profile (OP) and 
the closing profile (CP). For the panchromatic image, 
the MP/AP is built on the original single-band image di-
rectly. The OP or CP with its p scale set at pixel x forms a  
p-dimensional vector. By incorporating the OP and the CP, 
an MP/AP of pixel x is defined as a ( )p2 1+ -dimensional 
vector. Suppose that r features are extracted from the origi-
nal hyperspectral data, EMPs/APs (named EMP/EAP) are 
defined by concatenating all MPs/APs computed on these r 
features [9]. The EMP of pixel x is an ( )r p2 1+ -dimension-
al vector, and Figure 10 shows an EMP built on the first two 
PCs. Suppose that we want to construct n attributes [e.g., 
area and standard deviation (Std)] in im  [ , ] .i n1!^ h  For each 
attribute with the same scale (e.g., p thresholds), the EAP of 
pixel x is an ( )nr p2 1+ -dimensional vector.

The selected features are rescaled to a defined range 
and converted to integer form to be processed by the AFs. 
When converting the intensities of the selected features 
from double to integer, it is not easy to determine a good 
range. For a high range, it increases the computational time. 
For a lower range, although reducing the processing time, the 
rescaled features are smoothed, which leads to unexpected 
effects (e.g., many objects are connected). These connected 
objects are often treated as a single object by original-attribute 
thinning and thickening, which consequently leads to re-
duced classification performances. Figures 11 and 12 show 
examples of features with different rescaled ranges using 
attribute thinning [11], [12]; for the attribute thinning with 
partial reconstruction [51], we normalize the resulting 
thinning for better visualization. 

Figure 10. The EMP for a hyperspectral image. PC analysis is used as an example for FE, and the first two PCs are used to build 
the EMP.

Morphological Profile from the First PC

Morphological Profile from the Second PC
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Examples of area AP computed with the first PC rescaled into the range [0, 1000]. The scales of the area are in 500, 1,000, and 
5,000 pixels. (a) The first PC of the University of Pavia, (b)–(d) the AP computed by original attribute thinning, (e) the PC rescaled into range 
[0, 1,000], and (f)–(h) the AP computed by using attribute thinning with partial reconstruction.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Examples of area AP computed with the first PC rescaled into the range [0, 10]. The scales of the area are in 500, 1,000, and 
5,000 pixels. (a) The first PC of the University of Pavia, (b)–(d) the AP computed by original attribute thinning, (e) the PC rescaled into range 
[0, 10], and (f)–(h) the AP computed by using attribute thinning with partial reconstruction.
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The figures show that many small objects that should dis-
appear at a certain scale of area attribute remain even at a 
very high scale when using attribute thinning [11], [12]. This 
is much worse when the selected features were rescaled to a 
lower range (e.g., [0, 10] in Figure 11). This is because more 
objects are connected as the ranges of the rescaled features set 
decrease. If the attributes of all connected objects are mixed 
together, these connected objects remain or disappear to-
gether. In these cases, the attribute thinning and thickening 
cannot well model the spatial information of the objects.

EXPERIMENTAL RESULTS

EXPERIMENTAL SETUP
To generate MPs, we apply a circular SE with ten openings 
and ten closings (ranging from one to ten with a step-size 
increment of one). For the construction of the APs, we con-
sider three different attributes: 1) a, area of the regions; 2) s, 
Std of the gray-level values of the pixels in the regions; and 
3) i, first moment invariant of Hu, MI. The area extracts in-
formation on the scale of the objects. The Std and MI are 
not dependent on the size dimension, but they are related 
to the geometry of the objects and the homogeneity of the 
intensity values of the pixels, respectively. All of the images 
were rescaled to the range [0, 255] and converted to inte-
ger form to be processed by the AFs. The values of different 
attributes are [ , , , , , , , , , ,100 500 1 000 2 000 3 000 4 000am =  
, , , , , , , ],5 000 6 000 7 000 8 000  [ . , . , , , , , , , , ],0 1 0 5 1 2 3 4 5 6 7 8sm =  

and [ . , . ,0 1 0 15im = . , . , . , . , . , . , . , . ] .0 2 0 25 0 3 0 35 0 4 0 45 0 5 0 55  
Prior to applying morphological openings and clos-

ings (or the attribute thinning and thickening) to the 
hyperspectral image, PCA was first applied to the original hy-
perspectral data set, and the first few PCs (the first three PCs 
for the University of Pavia) were selected (representing 99% 
of the cumulative variance) to construct the EMPs. To com-
pare MPs and APs by reconstruction with those by partial 
reconstruction, we consider both information redundancy 
and their post applications to classification. We use a sup-
port vector machine (SVM) [59] classifier, as it performs 
well on the classification of high-dimensional and/or mul-
tiple features [26], even with a limited number of training 
samples, limiting the Hughes phenomenon [60]. The SVM 
classifier with radial-basis function (RBF) kernels in the 
MATLAB SVM Toolbox, a library for SVMs [61], is applied 
in our experiments. An SVM with RBF kernels has two 
parameters, i.e., the penalty factor C  and the RBF kernel 
widths .c  We apply a grid search on C  and c  using five-
fold cross-validation to find the best C  within the given set 
{ , , , , }10 10 10 10 101 0 1 2 3-  and the best c within the given set 
{ , , , , }.10 10 10 10 103 2 1 0 1- - -

We compared the following schemes: original image  
(Raw); morphological profiles with no reconstruction 
(MPNs), morphological profiles with geodesic reconstruction 
(MPRs), morphological profiles with partial reconstruc-
tion (MPPRs); each single existing AP , , ;AP AP and APa s i^ h  
and single APPR APPR , APPR ,and APPR .a s i^ h  We also com-

pared the performances of stacking all APs or APPRs 
together, which are defined as EAP and extended APPR 
(EAPPR) [EMP and EMP with reconstruction (EMPPR) for 
EMPs, respectively]. 

The performances of each scheme are quantitatively 
evaluated by measuring the following metrics: 
1)	 the normalized mutual information NMI^ h that tests the 

independence between two variables and measures the 
information that they share 

	 ( , )
( , ) ( , )

( , )
,f g

f f g g

f g
NMI

MI MI
MI

= � (9)

where the mutual information

	 ( , ) ( , ) ( ) ( )
( , )

,logf g p x y p x p y
p x y

MI
y gx f

=
!!

d n//   ,p x y^ h

is the joint probability distribution function of f  and ,g  
and p x^ h and p y^ h are the marginal probability distribu-
tion functions of f  and ,g  respectively.

2)	 the overall accuracy (OA) calculating the number of cor-
rectly classified samples divided by the number of all 
test samples

3)	 the average accuracy (AA) denoting the average of class 
classification accuracy

4)	 the kappa coefficient of agreement K^ h measuring 
the percentage of agreement corrected by the amount 
of agreement that could be expected due to chance 
alone [64]

5)	 the specific class accuracy representing the percentage of 
accurately classified samples for a given class.

Note that for 1), an NMI close to zero indicates indepen-
dence, while a high NMI indicates dependence and feature 
redundancy [63].

INFORMATION REDUNDANCY: RECONSTRUCTION 
VERSUS PARTIAL RECONSTRUCTION
The most popular MPs/APs generated by using morpho-
logical reconstruction (including geodesic reconstruction 
and AFs) [11], [12] contain redundant information, because 
the connected objects survive in many scales. To test this 
assumption, we take a Ghent Watersportbaan panchromatic im-
age as an example to compare the NMI among each profile 
(see Figures 13 and 14). These figures show that the MPNs 
contain the least redundancy with the lowest NMI among 
profiles. Figures 5(a), 6(a), and 7(a) show that objects smaller 
than the SE will disappear. 

Morphological reconstruction [11], [12] cannot model the 
spatial information of the connected objects well in VHR im-
ages. Objects that are expected to disappear in the image at a 
low scale are still present at the highest scales, as is shown in 
Figures 5–9, 11, and 12. This is why additional geometrical 
features generated with morphological reconstruction [11], 
[12] have the highest NMI, i.e., contain much more redun-
dant information. To reduce the redundancy, some algo-
rithms were developed to automatically select a threshold for 
morphological APs [65]. Recently, some artificial intelligence 
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algorithms were used for optimal feature selection in APs 
[39]. However, this increases the processing time. Moreover, 
the leakage problems cannot be solved. 

With partial reconstruction, we not only better preserve 
the shapes of the objects (compared to those without re-
construction) but also greatly reduce the information re-
dundancy contained in the generated profiles (compared to 
those with reconstruction). The connected objects are sepa-
rated and merged to a darker (opening) or brighter (closing) 
surrounding region per their real attributes. Consequently, 
the partial reconstruction treats the connected objects well 
and better models the spatial information of the VHR re-
mote-sensing imagery [10], [51]. The next question is: Can 
this information benefit post applications? 

APPLICATIONS ON CLASSIFICATION: 
RECONSTRUCTION VERSUS PARTIAL 
RECONSTRUCTION

RESULTS ON THE GHENT WATERSPORTBAAN 
PANCHROMATIC IMAGE
We investigate the capability of the panchromatic image to 
produce land-use maps of the urban scene described in the 

“Data Sets” section. The results are 
reported in Table 3, and the classifi-
cation maps are shown in Figure 15. 
The simple and direct way to produce 
a land-use map exploits only pan-
chromatic information with SVM 
classifiers. As expected, the results 
obtained appeared to be poor in 
terms of classification accuracy. The 
obtained K value is 0.40. Several of 
the defined classes were not recog-
nized, such as classes of dark roof 
and red roof. Even though water, 
shadow, and asphalt are different, 
it is well known from the literature 
that they may assume similar inten-
sities in panchromatic data. This has 

led to some confusion, where water is misclassified as shad-
ows while dark roofs have been grouped to road, as shown 
in Figure 15(a). 

To overcome the spectral deficit of panchromatic imag-
ery, mathematical morphology is one of the most popu-
lar ways to extract additional information to improve the 
recognition of the objects within the scene. Compared 
to the situation with only panchromatic imagery, there 
is a 10–25% improvement with additional features mod-
eled by mathematical morphology. Regarding the global 
accuracies, using the features with partial reconstruction 
yields a significant improvement when compared to that 
both with and without reconstruction. APPRs produced the 
best results on OA, AA, and ;K  and they lead to a signifi-
cant increase of the classification accuracies, with 24% OA 
improvement over using only raw data, 5–9% OA improve-
ments over using MP, and 7–17% OA improvements over 
the conventional APs. 

For MPs, it is better not to use geodesic reconstruction. The 
OA of geodesic reconstruction is much lower than those with-
out reconstruction and with partial reconstruction. For dif-
ferent man-made classes (e.g., dark roof, red roof, and road), 
which are typically connected in a remote-sensing scene, the 
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Figure 13. The mutual information matrices for MPs of a Ghent Watersportbaan panchromatic image: (a) MPNs, (b) MPRs, and (c) MPPRs.

Figure 14. The mutual information matrices for all APs (including area, Std, and MI) of a Ghent 
Watersportbaan panchromatic image: (a) original APs and (b) APPRs.
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confusion among them increases. However, without recon-
struction, the boundaries of some objects are deformed in 
the classification map, as shown in Figure 15(b). The par-
tial reconstruction is a tradeoff between reconstruction and 

no reconstruction. This also shows in the global accuracies, 
which are comparable with the case of no reconstruction. The 
classification maps in Figure 15(b), (c), and (d) show that par-
tial reconstruction produces smoother land-use maps than 

Table 3. THE GHENT WATERSPORTBAAN PANCHROMATIC IMAGE: CLASSIFICATION ACCURACIES OBTAINED BY ORIGINAL 
APs AND APPRs (THE VALUES WITH THE HIGHEST ACCURACY ARE IN BOLD).

Raw MPNs MPRs MPPRs Original APs APPRs

APa APs APi APs APPRa APPRs APPRi APPRs

Number of features 1 21 21 21 21 21 21 63 21 21 21 63 

OA (%) 48.29 66.57 63.87 67.0 64.22 60.24 55.77 65.52 70.80 67.29 57.49 72.10 

AA (%) 46.84 72.80 68.65 71.40 68.87 65.38 60.75 70.89 75.84 71.67 57.80 76.63 

K 0.40 0.612 0.580 0.616 0.585 0.541 0.491 0.601 0.659 0.619 0.505 0.674 

Water 71.44 98.34 99.14 98.16 99.62 99.68 93.09 99.63 99.79 99.63 91.85 99.84

Grass 72.21 69.75 72.80 72.23 74.66 72.86 67.94 74.68 76.52 77.19 68.75 74.60 

Trees 35.01 51.72 40.90 53.81 42.19 36.74 41.75 53.72 44.39 42.22 34.710 50.47 

Dark roof 18.53 60.52 52.48 55.83 54.51 42.30 32.14 54.39 62.11 53.46 40.22 63.85 

Red roof 0.0 83.75 66.64 72.41 65.05 53.78 47.55 71.75 83.55 66.18 20.89 78.98 

White roof 61.05 91.25 86.61 84.07 87.87 91.18 85.29 89.92 89.68 91.67 73.12 90.76 

Road 57.76 63.59 59.60 67.41 57.71 59.85 56.89 57.91 68.04 64.02 64.78 72.72 

Other man-made 34.24 51.52 54.05 51.35 52.26 45.53 36.77 46.67 70.29 62.91 44.57 67.98 

Shadows 71.32 84.75 85.61 87.35 85.95 86.48 85.30 89.32 88.21 87.79 81.35 90.44 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. The classification maps for the Ghent Watersportbaan panchromatic image. Thematic maps using (a) a raw panchromatic 
image, (b) MPNs, (c) MPRs, (d) MPPRs, (e) APa, (f) APPRa, (g) APs (stacking all individual attributes together), and (h) APPRs.
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reconstruction and much better preserved shapes and bor-
ders than with no reconstruction. 

For APs, AFsPR outperform conventional AFs on both 
individual attributes and stacking all attributes together. 
The improvements of partial reconstruction in terms of OA 
are 6, 7, and 2% for attributes of area, Std, and MI, respec-

tively, compared with those 
of convention APs. The attri-
bute of area produces better 
global accuracies than other 
attributes. With partial re-
construction, the confusion 
between the road and roofs 
decreases, and the accura-
cies of the dark roof and road 
classes increase by almost 
10%. This is because dark 
roofs and roads are typically 
connected, which means they 
are treated as the same object 
by conventional AFs, leading 

to poor performances for post classification. Partial re-
construction can separate the connected objects, better 
model their attributes, and enable improved classifica-
tion results.

RESULTS ON THE UNIVERSITY OF PAVIA  
HYPERSPECTRAL IMAGE
A hyperspectral image contains much richer information 
than a panchromatic image. The hyperspectral remote-sens-
ing data from an urban area is a mix between man-made 
structures and natural materials. Many objects are made 
of the same material (e.g., roofs and roads are made with 
the same asphalt); consequently, using only single spectral 

features is not enough for a reliable classification. We survey 
the extension of MPs and APs to the analysis of a hyper-
spectral image. Table 4 reports the accuracies, and Figure 16 
shows the land-use maps. 

The results confirm that including the additional spatial 
information modeled by mathematical morphology in the 
analysis resulted in higher accuracies (up to 20% of )K  than 
those obtained by considering only the spectral informa-
tion. The EAPPR produces the best results, with 17% OA im-
provements over using only raw hyperspectral data, 7–12% 
OA improvements over EMP [including EMP without re-
construction (EMPN), EMP, EMPPR], 4–17% OA improve-
ments over using a single attribute (e.g., area, Std, or MI), 
and 9% OA improvements over the EAP generated by using 
original AFs [12]. 

When using the original AFs, it is sometimes better to 
use single APs than simply stacking many of them for classi-
fication. The original EAP produces worse results than only 
using single APs built with Std attribute, with OA dropping 
more than 3%. For each single AP, the APPRs constructed 
using the AFsPR [51] perform better than APs constructed 
by the existing AFs [12]. The improvements of APPRs over 
APs are almost 4, 2, and 6% for area, Std, and MI attributes, 
respectively. Moreover, stacking all single APPRs that are 
generated by partial reconstruction enables much better 
performances on classification. The EAP generated using  
original AFs contains redundant information because some 
connected objects survive in many scales (see Figure 12). 
That is why EAP sometimes performs even worse than sin-
gle APs, which will be much worse when the selected PCs 
are rescaled into a lower range (see Figure 11 and discus-
sions in [51]). 

EMPs present similar conclusions as the Ghent Wa-
tersportbaan panchromatic image. APs outperform MPs 

Table 4. The UNIVERSITY OF PAVIA HYPERSPECTRAL IMAGE: CLASSIFICATION ACCURACIES OBTAINED BY  
ORIGINAL APs and APPRs (THE VALUES WITH THE HIGHEST ACCURACY ARE IN BOLD). 

Raw EMPNs EMPRs EMPPRs Original APs APPRs

APa APs APsi EAP APPRa APPRs APPRi EAPPR

Number of features 103 63 63 63 63 63 63 189 63 63 63 189 

OA 79.75 88.16 85.48 90.10 85.90 91.97 79.68 88.17 89.73 93.80 85.87 97.52

AA 88.26 84.75 90.10 88.16 91.93 91.90 85.26 92.37 93.95 94.29 90.65 97.47 

K 0.747 0.841 0.811 0.866 0.819 0.895 0.740 0.847 0.866 0.918 0.819 0.967

Asphalt 84.17 82.43 94.54 87.06 94.90 92.95 90.11 95.39 91.72 93.98 91.40 95.46 

Meadows 67.42 97.98 81.45 98.84 77.53 92.91 74.05 82.44 86.99 94.39 79.45 99.51 

Gravel 73.70 50.64 72.84 69.03 77.89 69.99 58.46 73.51 95.57 93.66 72.80 94.90 

Trees 94.78 90.54 97.06 91.09 95.14 89.20 90.34 97.23 96.31 83.29 93.96 98.34 

Metal sheets 99.63 99.93 99.93 100.0 99.93 100.0 99.85 100.0 100.0 99.93 99.93 100.0 

Soil 92.30 62.42 66.30 59.38 82.80 98.97 73.08 84.11 77.51 95.61 86.46 91.57 

Bitumen 91.20 80.38 99.62 89.85 99.85 99.25 99.55 99.77 99.62 95.34 96.02 99.70 

Bricks 91.47 98.89 99.24 98.40 99.48 84.71 81.99 99.05 98.02 92.42 95.95 97.75 

Shadows 99.68 99.58 99.89 99.79 99.89 100.0 99.89 99.79 99.79 100.0 99.89 100.0 

EMPRs: EMPs with geodesic reconstruction.

Many objects are made 

of the same material 

(e.g., roofs and roads 

are made with the same 

asphalt); consequently, 

using ONLY single spec-

tral features is not 

enough for a reliable 

classification.
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because the attribute of the Std produces better global 
accuracies than other attributes. With original APs, there 
is a large amount of confusion between gravel and bricks 
and meadows and soil. We see a clear improvement when 
using APPRs, and most of the gravel and meadows are 
now well classified.

RESULTS ON THE UNIVERSITY OF HOUSTON LiDAR DATA
Recent advances in airborne LiDAR technology allow us 
to rapidly measure topographical information over large 
areas. LiDAR remote sensing data have been widely used 
in many applications, e.g., forest management, urban plan-
ning, and disaster predictions. However, extracting useful 
information from LiDAR data remains challenging, espe-
cially in urban remote sensing where many objects have 

the same elevation and are connected, such as roads and 
parking lots, trees, and buildings. We analyze the use of 
mathematical morphology to extract additional informa-
tion for land-use classification. The resulting accuracies are 
reported in Table 5, and the classification maps are shown 
in Figure 17. 

With only elevation information from raw LiDAR data, 
there is a large amount of confusion between water and 
soil and between the different man-made classes. When 
adding additional information extracted by mathematical 
morphology, we see a clear improvement with K  over 20–
45%. Consequently, the soil and road classes are better 
distinguished. This data set is very challenging for classifi-
cation because the elevation information is very similar in 
some classes (e.g., tree and residential, grass stressed and 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16. The classification maps for the University of Pavia. Thematic maps using (a) a raw hyperspectral image, (b) EMPNs, (c) EMPRs,  
(d) EMPPRs, (e) APs, (f) APPRs, (g) EAPs, and (h) EAPPRs.
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soil, and road and parking lot 1). Moreover, these objects 
are connected in typical remote-sensing scenes. That is 
why geodesic reconstruction (even original APs) performs 
much worse than those with no reconstruction and with 
partial reconstruction, with OA decreases that are almost 
2–10%. Many classes are misclassified, grass stressed and 
soil are confused, and road and parking lot 1 are con-
fused. Working as connected filters, geodesic reconstruc-
tion and conventional AFs treat connected objects (even 

in different classes) as a single object. Without reconstruc-
tion, the borders of rectangular objects are obviously de-
graded to round ones. With partial reconstruction, the 
classification performances are greatly improved. APPRs 
produce the best OA, AA, and ,K  with 7% OA improve-
ments over MPNs and 9% OA improvements over APs. 
With partial reconstruction, the OA improvements over 
original APs are 14, 8, and 4% for the attribute of area, Std, 
and MI, respectively.

Table 5. The UNIVERSITY OF HOUSTON LiDAR DATA: CLASSIFICATION ACCURACIES OBTAINED BY  
ORIGINAL APs AND APPRs (THE VALUES WITH THE HIGHEST ACCURACY ARE IN BOLD).

Raw MPNs MPRs MPPRs Original APs APPRs

APa APs APi APs APPRa APPRs APPRi APPRs

Number of features 1 21 21 21 21 21 21 63 21 21 21 63 

OA 31.34 65.86 57.69 68.31 55.08 51.73 53.73 63.65 69.97 59.26 57.85 72.66

AA 37.57 68.76 63.92 70.18 58.37 55.65 56.89 65.33 72.67 63.28 62.05 74.81 

K 26.53 63.11 54.24 65.63 51.47 47.96 49.88 60.57 67.41 55.94 54.32 70.31

Grass healthy 35.90 37.51 44.16 48.05 60.02 61.63 63.44 61.63 60.97 70.47 62.58 76.16 

Grass stressed 2.73 50.19 45.02 66.54 42.39 16.64 24.91 49.81 51.88 18.80 39.00 62.12 

Grass synthetis 87.92 97.82 94.26 94.85 86.34 86.34 87.52 86.34 88.12 85.35 91.09 88.71

Tree 40.34 78.88 65.34 70.74 55.40 68.28 90.72 71.40 68.56 75.47 60.32 73.20 

Soil 14.49 73.30 70.46 79.36 28.41 35.61 33.05 36.08 79.83 78.50 80.30 89.77

Water 70.63 63.64 86.71 78.32 68.53 64.34 78.32 70.63 78.32 76.92 81.82 88.11 

Residential 57.37 68.38 65.21 70.80 66.14 60.63 35.07 74.35 77.71 54.85 58.40 69.50 

Commercial 14.62 96.39 73.31 90.31 70.09 52.90 37.42 65.81 62.77 54.23 42.55 71.51 

Road 22.0 50.71 40.89 60.06 49.95 37.58 47.21 53.45 57.44 53.26 34.37 47.78 

Highway 5.50 38.32 34.75 44.21 27.61 37.45 54.05 64.09 58.98 36.78 47.20 65.83 

Railway 67.65 81.31 43.55 79.41 89.37 96.77 90.82 98.86 89.75 76.85 88.24 98.48 

Parking lot 1 12.10 55.24 49.38 54.47 44.67 27.76 47.17 56.96 74.35 51.30 38.81 57.44 

Parking lot 2 11.93 58.60 63.51 69.12 61.75 62.46 39.65 65.61 62.81 67.37 61.05 63.51 

Tennis court 93.12 100.0 98.38 68.83 97.17 97.17 96.36 97.17 99.60 100.0 89.07 89.88 

Running track 27.27 81.18 83.72 77.59 27.70 29.18 27.70 27.70 81.61 49.05 56.03 80.13 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. The classification maps for the University of Houston lidar data. Thematic maps using (a) a raw hyperspectral image, (b) MPNs, 
(c) MPRs, (d) MPPRs, (e) APm, (f) APPRm, (g) APs, and (h) APPRs.
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CONCLUSIONS
In this article, morphological partial reconstruction is 
introduced for the analysis of VHR images. Morphologi-
cal reconstruction (including geodesic reconstruction and 
AFs) has been widely used to extract additional spatial in-
formation from raw images to improve the performances 
of many applications (e.g., classification and change de-
tection). However, conventional morphological recon-
struction suffers from leakage problems. Objects expected 
to disappear at a certain threshold remain present when 
they are connected with other objects in the image. The 
attributes of small objects are mixed with their larger con-
nected objects, which leads to poor performances on post 
applications. The main objective of this article is to ad-
dress a common situation in existing morphological re-
construction where the attributes of the connected objects 
in an image are not well modeled. A main contribution 
of partial reconstruction is that it can separate connected 
objects and thus better model the spatial information of 
objects in an image and enable improved performances 
for post applications. 

The experiments on a variety of urban remote-sensing 
scenes, including panchromatic, hyperspectral, and lidar 
images, confirmed the expected improvements of partial 
reconstruction over conventional reconstruction. The im-
provements become more significant when more objects 
from different classes are connected or all single attributes are 
stacked together. The literature shows that APs can outper-
form MPs as they can model higher-level features (not only 
size and shape but also homogeneity and contrast). However, 
in some typical remote-sensing scenes, where many man-
made objects are arranged in a complex manner (e.g., roads 
are connected to parking lots and buildings in panchromatic 
or hyperspectral scenes, or trees and roofs have similar eleva-
tion and are connected in lidar scenes), it is better to use 
MPPRs than conventional AFs. Moreover, when extending 
the conventional APs to hyperspectral images, it is sometimes 
better to use a single AP instead of simply stacking them to-
gether (i.e., the EAP) for post applications. The profiles gen-
erated by conventional reconstruction contain redundant 
information because objects survive in many scales if con-
nected with larger objects. Future work will include but is not 
limited to the following topics:
1)	 Speeding up the AFsPR by borrowing some ideas from 

second-generation connectivity [45], [46]. A simple pos-
sible solution is to first partition an image into two non-
overlaping parts to separate the connected objects. Then, 
the original AFs can be done in parallel on both parts. 
The filtering results of both parts can be merged to obtain 
the final output. Another efficient solution is to construct 
a max-tree and min-tree data structure based on the ap-
propriate connectivity so that leakage can be prevented 
and attributes can be computed on this tree. Fast imple-
mentation of the current version of partial reconstruction 
can exploit the use of commodity graphics processing 
units (GPUs) or multi-GPU platforms.

2)	 The fusion of multiple-level features for remote-sensing 
image interpretation. The state-of-the-art fusion meth-
ods typically manage either lower-level or high-level 
features but not a combination of both. For example, 
morphological operators were employed in [9], [10], 
[20], and [26] to extract low-level features (such as the 
size and shape of objects) from remote-sensing images. 
In [38], middle-level attribute features were extracted 
from both optical and lidar images for land-cover 
mapping. High-level features, such as semantic infor-
mation indexes [13]–[15] and so-called deep learning 
features, have been used for change detection and clas-
sification. The features extracted at each level have their 
own characteristics, i.e., high-level features are usually 
more powerful but less robust, while low-level ones are 
less informative but more reliable. Combining comple-
mentary features from multiple levels for better interpre-
tation remains challenging.
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