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Abstract 
Danjiangkou Reservoir (DJKR) is one of the largest artificial 
freshwater lakes in Asia and a water source of the South: 
the North Water Transfer Project. However, few studies have 
analyzed the spatio-temporal water quality distribution or 
investigated the causative factors of the long-term water qual-
ity variation of DJKR. In this study, we used multi-temporal 
Landsat images combined with the multiple linear stepwise 
regression (MLSR) method to retrieve long-term distributions of 
the main water quality parameters in DJKR, i.e., total nitrogen 
(TN), total phosphorus (TP), permanganate index (CODMn), 
and five-day biochemical oxygen demand (BOD5). Results 
indicated the heavily polluted regions and an alarming water 
quality deterioration trend between May 2006 and May 2014. 
A combination of land use/land cover (LULC) maps and socio-
economic data was considered to investigate the causative 
factors of the water quality distribution, as well as the deterio-
ration. This study could provide a valuable reference for the 
decision-making for water quality conservation in DJKR.

Introduction
Freshwater is indispensable for our lives and daily activities. 
However, China comprises 22 percent of the World’s popula-
tion but contains only 7 percent of the total surface freshwater 
on Earth (Li et al., 2009). Influenced by the monsoon climate 
and the mismanagement of water and soil resources, the water 
distribution in China is highly heterogeneous. In other words, 
less than 20 percent of the freshwater distributes in North 
China, which accounts for 63.5 percent of China’s land area. 
As a consequence, the North China Plain contains 0.35 billion 
people, yet has per capita water resources of only 456 m3, 
which is less than one-quarter of China’s average. Therefore, 
the South-North Water Transfer (SNWT) Project was officially 
launched in 2002 to solve this problem. The project has been 
one of the largest strategic projects in China since 1949 and 
has received global attention. This formidable and arduous 
project has three routes: the eastern and middle routes aim to 
channel water to North China, and the western route diverts 
water to Northwest China. Danjiangkou Reservoir (DJKR), 
located on the Han River, which is the longest tributary of the 
Yangtze River, is the one of the largest artificial freshwater 
lakes in Asia, with a surface area of ~1000 km2 and a volume 
of ~29 billion m3. It was therefore chosen to be the water 
source of the middle route of the SNWT Project, which aims 
to supply up to 13.8 billion m3 of freshwater annually to the 
North China Plain, including two municipalities (Beijing and 
Tianjin), and more than 130 other cities, for domestic, indus-
trial, and agricultural use (Li and Zhang, 2005). 

In addition, DJKR is one of the water sources of “NongFu 
Spring”, which has been one of the most popular drinking wa-
ter brands of China since 1996 and produces over 0.6 million 
tons of natural drinking water annually. The water quality of 
DJKR directly affects the drinking water security of hundreds 
of millions of Chinese people and the implementation of the 
largest-ever water transfer project. Therefore, periodic and ef-
ficient water quality monitoring in DJKR is urgently needed.

Traditional in-situ measurements are able to provide 
details of the optical properties of water, and they provide 
accurate data at fixed sample sites in DJKR. Nevertheless, this 
approach is not only costly and time-consuming, but also 
restricted by natural conditions, e.g. weather and terrain 
(Guan et al., 2011). Moreover, traditional in-situ measure-
ments cannot provide the spatio-temporal distributions of the 
water quality parameters (Chen et al., 2015), and hence limit 
the comprehensiveness of the water quality monitoring. With 
the advent of satellite images, they have been widely used for 
inland water quality monitoring due to their extraordinary 
ability of providing a synoptic view of water properties over 
a large-scale spatial area (Chen and Quan, 2012). Landsat 
imagery are generally applied in this situation, as they feature 
a global coverage, the longest record of Earth observation, free 
access, high-resolution, as well as multispectral data (Love-
land and Dwyer, 2012). The instructive application of multi-
temporal Landsat images in previous studies has confirmed 
their potential in large-scale water quality monitoring. For 
instance, Lathrop and Richard (1992), Kloiber et al. (2002), 
Ritchie (2003), and McCullough et al. (2012) used multi-tem-
poral Landsat images to perform long-term analyses of water 
clarity. Pastorguzman et al. (2015) and Tebbs et al. (2013) 
applied Landsat ETM+ bands to estimate chlorophyll-a (Chl-a) 
concentration and successfully related the results to the local 
algal blooms. Brezonik et al. (2005) made a characterization 
of the optical properties between Chl-a and colored dissolved 
organic matter (CDOM) using empirical models. Recently, Lobo 
et al. (2015) proposed a non-linear empirical regression model 
to estimate TSS in the Tapajós River Basin, and then combined 
it with the impact of gold mining activities.

However, little attention has been paid to the application 
of satellite images in DJKR. In addition, the existing pertinent 
studies have provided an insight mainly into Chl-a, CDOM, 
and water clarity, but they have neglected the many other 
important water quality parameters, such as total nitrogen 
(TN), total phosphorus (TP), permanganate index (CODMn), and 
five-day biochemical oxygen demand (BOD5), which are also 
closely related to anthropogenic activities and contribute to 
the eutrophication of the lakes and reservoirs.

The purpose of this study was to apply multi-temporal and 
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2006 to 2014, as well as routine in-situ datasets, to retrieve a 
synoptic view of the distribution of CODMn, BOD5, TP, and TN, 
which are the main parameters of the routine water qual-
ity monitoring in DJKR. Furthermore, we provided insights 
into the influence of the tributaries on the spatio-temporal 
distribution and variation of the water quality parameters, 
considering that few of the existing studies took into account 
the impacts of the tributaries on the water quality conditions. 
The multiple linear stepwise regression (MLSR) method was 
employed to develop reliable algorithms to extract the afore-
mentioned water quality parameters. We then discussed the 
seasonal distribution and annual water quality variability. The 
water quality results were subsequently used to examine pos-
sible pollution sources in both the reservoir and tributaries. 
The land use/land cover (LULC) maps and statistical data se-
ries were also incorporated into a synthetic discussion on the 
causative factors of the water quality deterioration. The results 
of this study will provide an essential and timely reference for 
the water quality improvement in the DJKR catchment area.

Materials 
Study Area
Danjiangkou Reservoir (DJKR, 32°36  to 33°48 N, 110°59  to 
111°49 E) is located on the upstream of the Han River at the 
junction of Hubei and Henan provinces, Central China (Figure 
1). It is recognized as one of the largest artificial freshwater 
lakes in Asia, with a surface area of ~1000 km2 and a volume 
of ~29 billion m3 (after the dam was raised in 2005). Therefore, 
DJKR is known as the “Water Capital” and was assigned to be 
the source of the middle route of the SNWT Project. In accor-
dance with the distribution of the two main tributaries, the Han 
River and the Dan River, DJKR is ordinarily divided into two 
parts: Han Reservoir, which is connected with the Han River 
in Hubei province; and the Dan Reservoir connected with the 
Dan River in Henan province. The area of the DJKR watershed 
is 95,200 km2, and the average annual inflow is 39.48 billion 
m3, 90 percent of which comes from the Han River and the rest 
from the Dan River. The elevations within the whole water-
shed, which is surrounded by mountain ranges, e.g., the Qin 
Mountains, range from 150 m to 3,612 m. The average annual 
precipitation is over 850 mm, with a clear seasonal variation, 
and about 80 percent of the annual precipitation occurs during 
May to October due to the typical subtropical monsoon climate.

Characterized by its diverse biocoenoses and land struc-
tures, the DJKR catchment area is a complex eco-environment. 
Specifically, in terms of the Chinese soil classification system 
(Li et al., 2009), the soil types of this area consist of brown 
soil, yellow-brown soil, yellow-cinnamon soil, paddy soil, 

calcareous soil, chao soil, and purple soil. The purple soil, in 
particular, is believed to be responsible for most of the sedi-
ment in the Yangtze River, as well as its tributaries, includ-
ing the Han River. Forest vegetation covers approximately 
35 percent of the catchment area (Gu et al., 2008), and large 
areas of farmland are distributed adjacent to the reservoir, 
especially the eastern and northern parts of Dan Reservoir in 
Henan Province. A large proportion of the 13 million residents 
in the upper Han River are peasants (Zhang et al., 2009). In 
addition, there are four state-level poverty-stricken counties 
(i.e., Yunyang, Yunxi, Xichuan, and Danjiangkou) and one 
prefecture-level city, Shiyan, which is well known for its auto-
mobile industry, located along the tributaries. Yunyang, Yunxi, 
and Xichuan counties are subordinate to Shiyan. As a result, 
intensive agricultural and industrial activities are found along 
the rivers and streams.

Satellite Data Selection
Landsat, which was first launched in 1972 and has since 
experienced seven successful missions, has established an un-
precedented 43-year record of observations of the global land 
surface, land conditions, and dynamics (Loveland and Dwyer, 
2012). In addition, it has attracted a large number of research-
ers due to its free access, relatively high spatial resolution, 
and fine spectral trajectories. In this study, 22 Landsat images 
(path 125, row 37) with less than 10 percent cloud cover and 
high signal-to-noise ratio (SNR) were carefully selected from 
three different sensors (i.e. TM, ETM+, and OLI) in the period 
between 2006 and 2014. These images were used to retrieve 
the spatio-temporal distributions of a set of water quality 
parameters and to investigate the causative factors of water 
quality in DJKR. As mentioned earlier, about 80 percent of the 
annual precipitation occurs during May to October in the 
study area. We therefore refer to May to October as the “wet 
season”, while the rest of the year is referred to as the “dry 
season”. Images in both the wet and dry seasons were applied 
to examine the seasonal distributions of the water quality pa-
rameters, considering the significant distinctions between the 
hydrologic conditions in different seasons (Feng et al. 2016). 
Nine images of 2013, including five in the wet season and 
four in the dry season, were deliberately selected for model 
development in view of their relatively intensive sample sites. 
The remaining images were used for validation in the experi-
ments. All of the images were Level 1T (L1T) data provided by 
the United States Geological Survey (USGS 2014). The chosen 
images are listed in Table 1. The time window, which was 
defined as the time difference between the date of the image 
acquisition versus the in-situ data, was set to ±4 days in terms 
of Bonansea et al. (2015) and Lamaro et al. (2013).

Table 1. Time Series Landsat Images Used in This Study

Season Image acquisition date Sensor
Time window

(days) Season Image acquisition date Sensor
Time window

(days)

Wet season

05-23-2006 TM −3

Dry season

11-07-2006 ETM+ −1
09-15-2007 TM +4 11-28-2008 ETM+ −4
09-01-2008 TM −2 04-08-2010 ETM+ 0
05-07-2009 ETM+ +2 12-04-2010 ETM+ −4
05-02-2010 TM −1 01-26-2013 ETM+ −2
07-08-2011 TM +3  11-18-2013* OLI 0
09-04-2012 ETM+ +1  12-04-2013* OLI 0

 05-02-2013* ETM+ 0  01-21-2014* OLI −1
 06-11-2013* OLI +4  03-26-2014* OLI −1
 08-06-2013* ETM+ +1
 08-14-2013* OLI −3
 09-15-2013* OLI −2
05-05-2014 ETM+ 0

* Images chosen for model development.
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Field Data
It is worth noting that CODMn, BOD5, TP, and TN are all routine 
water quality monitoring parameters of DJKR and their values 
were all collected at a total of 20 monitoring stations set up 
by local hydrology departments, with four sampling stations 
in the reservoir and 16 in the tributaries (Figure 1). Specifi-
cally, these four water quality parameters were collected 
monthly from 2005 to 2013 at the four sampling stations in 
the reservoir, while the samples in the tributaries were col-
lected semimonthly from 2012 to 2014. Water samples were 
acquired automatically by the water collecting system at 0.5to 
1.0m depth. CODMn, BOD5, TP, and TN were all extracted by 
standard automatic on-line permanganate index analyzer and 
the analytical techniques for these indices can be found in the 
Chinese water quality analytical standards, such as Deter-
mination of 34 Elements (Pb, Cd, V, P, etc.) (SL 394.1-2007), 
which has been explained in Xin et al. (2015).

To better understand water quality conditions, surface 
water quality is classified into five grades (Grades I to V) in 
China according to the Environmental Quality Standards 
for Surface Water (GB 3838-2002) (http://www.zhb.gov.cn/), 
where a higher grade indicates worse water conditions. Serv-
ing as the water source of the SNWT Project, the water quality 
of DJKR is demanded to be strictly controlled below Grade II, 
which requires the concentration of CODMn, BOD5, TP, and TN 
to be limited to 4.0 mg/L, 3.0 mg/L, 0.025 mg/L and 0.5 mg/L, 
respectively.

The 1:100 000 LULC maps of 2005, 2010, and 2015 were 
mainly generated from the Landsat TM/ETM images with a 
spatial resolution of 30 m. This dataset was provided by the 
Data Center for Resources and Environmental Sciences, the 
Chinese Academy of Sciences (RESDC) (http://www.resdc.
cn/). The annual wastewater discharge was provided by the 
Hubei Provincial Department of Water Resources (http://www.
hubeiwater.gov.cn/), and the annual amounts of chemical fer-
tilizer applied were obtained from the Hubei Statistics Bureau 
(http://www.stats-hb.gov.cn/). These statistical data were used 
to analyze the water quality variation in the DJKR area.

Methods
Image Preprocessing
The L1T Landsat data provided by the USGS have been geo-
metrically corrected. The geographic coordinates of the 20 
sampling stations identified by GPS were used as references 
for the verification. The results showed that all of the images 
were geo-referenced with a precision of less than 0.5 pixel. To 
mask out the haze and cloud cover, we applied a visible/ther-
mal infrared band combination detection method (TM/ETM+ 
bands 1, 6, 6(RGB) or OLI bands 2, 7, 7(RGB)) (Sriwongsitanon 
et al., 2011). The digital number (DN) values sensed remotely 
were converted to the top-of-atmosphere (TOA) radiance 
values, followed by atmospheric correction based on the Fast 
Line-of-sight Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) module embedded in ENVI 5.1. More details of the 
FLAASH algorithm can be found in Cooley et al. (2002), and 
the main parameters used in the FLAASH module in this study 
can be found in the metadata in terms of Han et al. (2015).

Due to the adjustments of the specific bands of OLI instru-
ment, the spectral response of the OLI bands could be distinct 
from the corresponding bands of TM/ETM+. Flood (2014) indicat-
ed that the TM/ETM+ reflectance could be linearly estimated from 
the corresponding OLI reflectance based on invariant features, 
and vice versa. Without losing generality, pseudo-invariant fea-
tures (PIFs), which were generally acceptable in satellite image 
normalization, were considered here for the normalization of 
the between-sensor change. PIFs commonly refer to bright tar-
gets (e.g., sand, bare land, concrete construction) and dark tar-
gets (e.g., dark dense forests and water bodies) (Du et al., 2002; 
Lobo et al., 2015). The selection of reliable reference images is a 
prerequisite for normalization. Considering that OLI bands were 
better designed for reducing atmospheric effects on spectral 
response, we chose the radiometrically corrected to a Landsat 
8-OLI image acquired on 11 June 2013, as the reference image 
for the wet seasons, and the radiometrically corrected Landsat 
8-OLI image acquired on 18 November 2013, as the reference 
image for the dry seasons. The bare land, concrete construc-
tion, and dense forests were used as the PIFs in this study. The 
dense forests were identified if the middle-infrared (MIR) band 
reflectance MIR was greater than or equal to 0.05 and the NDVI 
was greater than 0.1 according to Song et al. (2001). About 90 
PIFs were manually selected for each image, and they were all 

Figure 1. Study area: (a) Overview of the middle route of the SNWT Project, and (b) Location of the Danjiangkou Reservoir 
catchment area, the sampling stations, and the main rivers and cities.
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evenly distributed close to the DJKR catchment area. Normaliza-
tion of these images was then accomplished based on ordinary 
least squares (OLS) regression in terms of Lo and Yang (2000) 
and Canty et al. (2004). The PIFs were reselected until the cor-
relation coefficients of each model reached 0.95 (p <0.05).

Model Development
The modified normalized difference water index (MNDWI) algo-
rithm proposed by Xu (2006) was adopted to extract the bound-
aries of DJKR and the tributaries. The thresholds were manually 
adjusted in order to guarantee the accuracy of the footprints of 
the water areas in the multitemporal Landsat images.

The MSLR method has been widely used to develop empirical 
water quality models due to its superiority in optimal variable 
selection (Çamdevýren et al., 2005; Sriwongsitanon et al., 2011). 
The Landsat image pixels corresponding to the in-situ sample 
stations were first extracted from the specified images in the 
dry season and the wet season in 2013 (Table 1), and the mixed 
pixels were excluded from the water delineation, since some of 
the sample locations were too close to the land (less than 30 m), 
especially in the small tributaries. The outliers were then elimi-
nated to optimize the models in terms of Selst and Jolicoeur 

(1994). Therefore, the final data points used for the regression 
analyses were 31 in the wet season and 26 in the dry season.

The Kolmogorov-Smirnov (K-S) test indicated that the 
original and log-transformed CODMn, BOD5, and TP, as well as 
the TN values in both seasons, were all normally distributed. 
Meanwhile, the original in-situ datasets were obviously more 
Pearson-correlated with the reflectance values of the Landsat 
OLI bands (Table 2). Consequently, the original CODMn, BOD5, 
TP, and TN values were set as the dependent variables. As Oki 
(2010) explained, band ratios can effectively reduce the influ-
ence of backscattering. Seven bands (OLI bands 1 to 7) and their 
mutual ratios were therefore simultaneously incorporated into 
the possible independent variable set in this study.

Subsequently, the MLSR analysis between each original 
water quality parameter versus the corresponding reflectance 
values of the OLI bands was undertaken separately. For the 
model development of each water quality parameter in each 
season, the aforementioned bands, as well as their ratios, were 
input into the model successively until no more improve-
ments could be received from the new additional variables. 
Meanwhile, bands or band ratios which made undesirable 
contributions to the model, or showed lower correlations with 
the in-situ values of the water quality parameters than other 
variables having been included in the model, were excluded 
from the model (Figure 2). The number of selected predictor 
variables (either bands or band ratios) was limited to three in 
order to reduce the possibility of over-fitting and ensure the 
robustness (Hansen et al., 2015). Moreover, the coefficient of 
determination (R2) and the mean squared error (MSE) were cho-
sen as the two main evaluation criterions to select the optimal 
water quality models. R2 values ought to be close to 1, and the 
MSE was required to be the minimum.

Results
Regression Models
Table 3 presents the best regression models 
for CODMn, BOD5, TP, and TN in the two dif-
ferent seasons, with R2 ranging from 0.51 to 
0.81. Specifically, CODMn is found to be more 
closely related to OLI bands 5 and 6 (R2 = 
0.61 in the dry season and R2  = 0.58 in the 
wet season). Meanwhile, BOD5 is primarily 
related to OLI band 5 and shows a posi-
tive correlation with OLI band 7 in the wet 
season (R2 = 0.81). Both TN and TP are most 
relevant to the visible and near-infrared re-
gions (bands 2 to 5 and their combinations, 
with R2 ranging from 0.51 to 0.62), with OLI 
band 6 being moderately correlated with TN 
in the wet season (R2 = 0.64). Similar results 
were also reported by Chen and Quan 
(2012), who used TM bands 1 to 4 to esti-
mate TP and TN concentrations in Tai Lake, 
with R2 values of 0.63 and 0.24, respectively.

Table 3. The best regression models for predicting the water quality parameters in DJKR.

Season Water quality parameter Model R2 MSE p-value

Dry season

CODMn CODMn=67.06*B5−31.37*B6 +1.42 0.61 2.487 <0.05

BOD5 BOD5=26.83* B5–0.113 0.52 1.401 <0.05

TP TP=0.02*B3/B2+1.24* B5–0.06 0.54 0.003 <0.05

TN TN=0.28* B3/ B5+21.07*B4+0.74 0.62 1.146 <0.05

Wet season

CODMn CODMn=−1.05* B5/ B4+51* B6+2.69 0.58 0.759 <0.05

BOD5 BOD5=−7.54* B5+69.40*B7+0.58 0.81 0.114 <0.05

TP TP=−0.07*B5/B3+2.033*B5 0.51 0.005 <0.05

TN TN=23.857*B6+23.089*B4−0.333 0.64 0.473 <0.05

*B2 to B7 represent the normalized reflectance values of the corresponding OLI bands.

Table 2. Comparison of the mean pearson correlation 
coefficients (p <0.05) of the in-situ datasets versus the 
reflectance values of the OLI bands.

Data 

Dry season Wet season

CODMn BOD5 TP TN CODMn BOD5 TP TN

Original 0.55 0.50 0.49 0.53 0.52 0.74 0.60 0.61

Log-
transformed

0.51 0.48 0.49 0.49 0.47 0.61 0.47 0.59

Figure 2. Variables exclusion/inclusion in MLSR method.
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The in-situ data measured on the acquisition dates of the 
11 remaining images, which were not used for the model 
development, were chosen for further accuracy validation of 
the regression models. The best-fit models were applied to 
normalize the images and then obtain the estimated values 
of the corresponding water quality parameters. The relation-
ships between the estimated values and the in-situ data are 
shown in Figure 3. These verification points are all evenly 
distributed close to the 1:1 line, and thus confirm the robust-
ness of the developed models (R2 = 0.91).

Water Quality Changes Over the Years
Compared with traditional water quality measurements, one 
of the great advantages of satellite images is that they can pro-
vide a synoptic view of water quality over a large-scale spatial 
area, which can be of considerable assistance to the investiga-
tion of the pre-existing or latent driving factors of water qual-
ity deterioration, as well as the appropriate decision-making 
for water conservation in DJKR. Accordingly, the validated 
water quality regression models were then applied to process 
Landsat images from May 2006 to May 2014, to obtain spatio-
temporal water quality distribution maps of DJKR. The spatial 
distributions of these four water quality parameters inversed 
from the same Landsat image showed similar spatio-temporal 
patterns. Herein, we take the TN distribution maps for an 

example for detailed analyses.
Figure 4 presents the distribution of the TN 

concentration in DJKR from 2006 to 2014, which 
differed significantly in the wet and dry seasons. 
For ease of quantitative comparison, we divided 
the area into three parts: the Dan reservoir, the Han 
reservoir, and the tributaries. In general, higher TN 
values were distributed primarily over the water/
land interface area, the eastern Dan Reservoir, and 
where the tributaries enter the reservoir. On the 
basis of the results shown in Table 4, the values 
of TN concentration in the tributaries were much 
higher than in the reservoir in both seasons. It is 
also noteworthy that the TN concentration in Han 
Reservoir was lower in the southern area than in 
the north, yet, in Dan Reservoir, worse TN pollu-
tion was evident in the water/land interface area 
and the eastern region. Moreover, Dan Reservoir 
appeared to be more polluted than Han Reservoir 
in most cases (Table 4). Additionally, there were 
more homogeneous distributions and higher mean 
values of TN concentration in DJKR in the dry 
seasons than in the wet seasons, which suggests 
worse water quality in the reservoir in the dry 
seasons, coincident with Chen et al. (2015).

Figure 5 demonstrates the water quality varia-
tion from 2006 to 2013 in the DJKR area. In the 
period between May 2006 and May 2014, the val-
ues of all four water quality parameters showed 
deteriorating trends (+52.0 percent for TN, +29.2 
percent for BOD5, +16.1 percent for CODMn, and 
+133.3 percent for TP) in the DJKR area. Specifical-
ly, the mean concentration values fluctuated from 
May 2006 to May 2010, with TN (from 1.27 mg/L 
to 1.47 mg/L), BOD5 (from 1.22 mg/L to 1.38 mg/L), 
and TP (from 0.03 mg/L to 0.04 mg/L) increasing 
and CODMn slightly decreasing from 2.67 mg/L to 
2.65 mg/L. The water quality parameters reached 
a peak in July 2011, with the TN, BOD5, CODMn, 
and TP concentration values reaching 2.2mg/L, 
1.82mg/L, 3.4mg/L, and 0.08mg/L, respectively. 
Despite a significant decrease in 2012, the values 
of the four water quality parameters rebounded 
during 2012 to 2014. In addition, the values of TN 

Figure 3. Relationships between the estimated values and 
the in-situ data measured on the acquisition dates of the 11 
remaining images, with a 1:1 fit line. N represents the num-
ber of validation points.

Figure 4. TN concentration distribution maps of DJKR and its tributaries 
from 2006 to 2014.
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concentration showed a substantial increase in both Dan Res-
ervoir and Han Reservoir (+50.4 percent in Dan Reservoir and 
+41.4 percent in Han Reservoir) from 2006 to 2014 (Table 4). 
In general, the BOD5, CODMn, and TP concentrations were stable 
at Grade I or II level, except for the tributaries and the terribly 
polluted seasons in 2011 and 2013. However, the mean TN 
values in the reservoir were constantly more than twice the 
limit values for Grade II waters, indicating severe TN pollution 
in DJKR over the past nine years.

Discussions and Analyses
Re ectance Issues
Atmospheric correction is one of the pivotal factors prior 
to the time-series satellite image analysis. However, in this 
study, both between-sensor differences and lack of informa-
tion about the in-situ atmospheric conditions brought extra 
difficulties to the atmospheric correction. With the purpose 
of overcoming or rather reducing the influence of these two 
issues and preferably estimating the water quality parameters 
of DJKR, we applied one of the most accurate atmospheric 
correction method, i.e., FLAASH algorithm, which provides 
pre-defined in-situ atmospheric conditions, to obtain reliable 
surface reflectance values of the DJKR. At the same time, OLS 

method was used to normalize the surface reflectance of the 
imagery time-series in order to ensure the between-sensor 
consistency. 

Surface reflectance values before and after normalization of 
the between-sensor change were demonstrated in Figure 6. For 
ease of comparison, the reflectance values were stretched to 
0-10000 to raise the gaps between the values. It is visible that 
the surface reflectance values were more centralized and close 
to the 1:1 fit lines after normalization, particularly prominent 
in the dark areas. In other words, the surface reflectance values 
of the TM/ETM+ were much closer to the referenced OLI images 
when applied OLS correction. In the bright areas, normalization 
seemed to be less effective, especially in OLI bands 3 and 4. 
Due to the high reflectance, complex structure as well as mixed 
pixels of bright targets, estimating the land surface reflectance 
for bright surfaces using Landsat images has been a great chal-
lenge (Sun et al., 2015). Given that only dark objects (i.e., water 
areas) were researched in this paper, the bias of normalization 
were considered to be negligible. 

Causative Factors
The water quality parameters (CODMn, BOD5, TP, and TN) 
retrieved by the multitemporal and multi-sensor Landsat im-
ages revealed a deteriorating water quality trend and showed 
a heterogeneous spatio-temporal distribution in DJKR during 
the observation period. Both natural and human factors were 
analyzed to investigate the causative factors of the water qual-
ity distribution and the driving forces of the water pollution. 

Natural Factors
The LULC maps of the DJKR catchment area presented in Figure 
7 showed that the land-use types along the tributaries were 
mainly farmland and grassland, which were confronted with 
high soil erosion risk as well as heavy eco-environmental 
vulnerability (Li et al., 2009; Wang et al., 2013), especially 
along the Dan River. Farmland, grassland, and shrub land 
accounted for more than 65 percent (69.1 percent in 2005 and 
68.07 percent in 2015) of the total area (Table 5). A large area 
of forest (116 km2) was transformed into grassland and shrub 
land (Figure 7), while the area of building land increased by 
177.89 km2 in 2015 compared with that in 2005. Thus, the 
ability for soil and water conservation was reduced. Ad-
ditionally, the high mountains and steep slopes around the 
reservoir also increase the soil erosion risk in this area (Wang 
et al., 2003; Wang et al., 2013). In the meantime, continu-
ous and heavy rainfall in the wet seasons greatly aggravates 

Figure 5. Mean concentration variability of (a) TN, (b) BOD5, (c) CODMn, and (d) TP from 2006 to 2014. The horizontal lines in 
each plot represent the standard deviations of the values of the estimated water quality parameters.

Table 4. Comparison of the mean values of TN concentration 
in the Dan reservoir, Han reservoir, and the tributaries.

Season Date
Dan Reservoir
mean (mg/L)

Han Reservoir
mean (mg/L)

Tributaries
mean (mg/L)

W
et

 s
ea

so
n

05/23/2006 1.27 1.16 1.45
09/15/2007 1.22 1.57 1.83
09/01/2008 1.47 1.59 2.30
05/07/2009 1.64 0.65 1.46
05/02/2010 1.37 1.27 1.87
07/08/2011 1.93 1.84 2.29
09/04/2012 1.33 1.55 1.92
06/11/2013 2.18 1.41 1.92
05/05/2014 1.91 1.64 2.46

D
ry

 s
ea

so
n

11/07/2006 1.97 1.88 2.39
11/28/2008 1.93 2.10 2.08
04/08/2010 1.74 1.75 2.20
12/04/2010 1.81 2.13 2.36
01/26/2013 / 1.93 2.36
11/18/2013 1.39 1.68 2.09
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soil erosion and then causes soil material sedimentation in 
DJKR and its tributaries. As a result, the high soil erosion risk 
in this area ultimately leads to the water pollution in DJKR, 
especially in the water/land interface area and where the 
tributaries enter the reservoir. The severe water pollution in 
July 2001 and June 2013 was mostly due to the stony deserti-
fication resulting from vegetation reduction and the heavy 

rainfall near the dates of the image acquisition (Hubei Daily, 
2013; China Meteorological Administration, 2015). Moreover, 
the heavy rainfall and the torrents in the wet seasons disperse 
the contaminants in the reservoir and lead to inhomogeneity 
of the water quality distribution, which can partly explain the 
differences between the wet and dry seasons.

Human Activities
As presented in Figure 1, four state-level poverty-stricken 
counties and one prefecture-level city are located along the 
tributaries. The large population (more than 4 million in 
2014) inevitably leads to intensive agricultural and industrial 
activities, and thus causes both point-source and non-point-
source pollution.

Intensive agricultural activities over large areas of farm-
land will generally result in the use of massive amounts of 
nitrogenous and phosphorus fertilizers. Considering the fact 
that the utilization rates of the fertilizers were found to be 
less than 40 percent, redundant nitrogen and phosphorus in 
the soil will ultimately enter into the reservoir and tributar-
ies through runoff as well as underground water (Liu et al., 
2014). Figure 8a indicates a significant relationship between 

Figure 6. Surface reflectance values before (grey points) and after (black points) normalization of the between-sensor change 
(totally 1,332 points). The grey dash lines and black solid lines represent the fitted lines of the reflectance values before and after 
normalization, respectively.

Figure 7. The LULC maps of the DJKR catchment in (a) 2005, (b) 2010, and (c) 2015.

Table 5. Comparison of the area of each land-use type in the 
DJKR catchment area between 2005 and 2015.

Land-use 
type

2005 2015
Area 
(km2)

Percentage 
(%)

Area  
(km2)

Percentage 
(%)

Farmland 2606.71 23.93 2502.50 22.97
Forest 2646.78 24.30 2530.83 23.24
Shrub land 3532.59 32.43 3551.30 32.61
Grassland 1387.56 12.74 1360.15 12.49
Bare land 20.66 0.19 19.16 0.18
Built-up land 133.07 1.22 310.96 2.86
Water body 565.45 5.19 616.51 5.65
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the annual amount of fertilizer applied in the study area and 
the mean concentration of TN (R2 = 0.36, p <0.1). In other 
words, the fertilizer use can explain about 36 percent of the 
severe nitrogen pollution in the DJKR area. It is also apparent 
that the regions with larger TN values are generally adjacent to 
larger areas of farmland, especially around Dan Reservoir, as 
confirmed in Figure 4. However, the correlation between the 
amount of fertilizer applied and the values of the TP con-
centration are relatively weak (R2 = 0.19, p >0.1) (Figure 8b). 
Indeed, municipal effluents, livestock waste, and other latent 
causative factors can also lead to nitrogen or phosphorus 
pollution, hence, additional data is required for more compre-
hensive investigation.

BOD5 and CODMn mainly stem from activities such as 
industrial effluent and domestic sewage (Chen et al., 2015; 
Zhu et al., 2008). The prefecture-level city, Shiyan, located 
by the Han River, is well known for its automobile industry. 
In addition, Xichuan is recognized as the largest producer of 
vanadium ore in Henan province. Waste water was mainly 
discharged into local tributaries, which could explain the 
severe BOD5 and CODMn pollution in the tributaries, and eventu-
ally flowed into the reservoir. Figure 9 shows a weak correla-
tion between the annual sewage discharge and the mean BOD5 
concentration in the DJKR area from 2006 to 2014 (R2 = 0.25, p 
>0.1). However, the increasing trend of the annual sewage dis-
charge closely corresponds to the trend of BOD5 over the study 
period, which demonstrate that the sewage discharge can be 
considered as a driving factor of the increasing BOD5 concen-
trations in the study area, and CODMn can be explained like-
wise. Additionally, it is noteworthy that the tributaries played 
dominant roles in the transportation of BOD5 and CODMn to DJKR.

Likewise, the construction of the Danjiangkou Dam may 
have impacted the water quality distribution in the reservoir. 
The dam was elevated from 162.0 m to 176.6 m for the SNWT 
Project from 2005 to 2010. However, the increase of the water 
level led to increased water retention times and imposed 
restrictions on the discharge of contaminants (Chen et al., 
2016). The water quality distribution maps for the 
wet season of July 2011 present a clear dividing line 
at the dam (Figure 4). In addition, the upland water 
greatly decreases in the dry seasons, and the outflow 
of water at the dam is generally reduced by human 
intervention to stabilize the water storage in DJKR, 
which further increases the time of contaminant 
retention. The more severe TN pollution of DJKR in 
the dry seasons between 2006 and 2014, as shown 
in Table 4, could be attributable to this reason. 
Therefore, the obstruction of the dam augments the 
sedimentation of soil nutrients and aggravates the 
deterioration of water quality in the reservoir.

Conclusions
In this study, we used multi-temporal and multi-
sensor Landsat images from 2006 to 2014 to obtain 
long-term observations of the distribution and 
variation of CODMn, BOD5, TP, and TN in DJKR. The 
water quality distribution maps retrieved from the 
time series of Landsat images presented consider-
able heterogeneity of water quality distribution and 
also revealed severe TN pollution in the DJKR area 
during the observation period. The heavily polluted 
regions were distributed primarily in the water/land 
interface area, the eastern Dan Reservoir, and where 
the tributaries enter the reservoir. Additionally, DJKR showed 
a more homogeneous water quality distribution in the dry 
seasons, which was likely due to the relatively low stream 
flow in the tributaries and reservoir in the dry seasons, as well 

Figure 9. The annual sewage discharge in the DJKR area and the mean 
BOD5 concentration retrieved in this study during the observation 
period. The blue and gray dashed lines are the trend lines of the BOD5 
concentration and sewage discharge variations, respectively.

(a)

(b)

Figure 8. Relationships between the annual fertilizer amount 
and the mean concentration of (a) TN, and (b) TP retrieved by 
regression models.

40 September  2017  PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



as the construction of the Danjiangkou Dam. Furthermore, the 
concentration of the water quality parameters in the tributar-
ies was much higher than that in the reservoir in both seasons, 
which indicates the more severe pollution in the tributaries. 
The tributaries have become a dominant conveyor of contami-
nants, and thus pose a threat to the water quality in DJKR. 

The long-term water quality variation showed a significant 
deteriorating trend, which appeared to be driven by both 
natural and human factors. For instance, the increase of the 
BOD5 and CODMn concentrations could be linked to sewage 
discharge. The soil erosion and the massive use of fertilizer 
could partly explain the severe TN pollution in this area. Even 
though the government has taken steps to improve the water 
quality in DJKR in recent years, e.g., through conversion of 
farmland to forest and reducing the number of factories, this 
study indicated that more effective measures are urgently 
needed. The information provided in this study should not 
merely raise public alarm, but should also provide an es-
sential reference for local government to make appropriate 
and comprehensive policies for water quality improvement 
in DJKR, and ensure the implementation of the South-North 
Water Transfer (SNWT) Project.
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