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On the errors-in-variables model with
inequality constraints of dependent variables
for geodetic transformation
W. Zeng1, X. Fang∗1, Y. Lin2, X. Huang3 and Y. Yao1

The Total least-squares (TLS) adjustment with inequality constraints has received increased
attention in geodesy over the last three years. In the most recent work, inequality constraints
have been presented that can restrict unknown parameters and independent variables, but no
one has provided an inequality-constrained adjustment for restricting dependent variables. In
this work, we review the TLS adjustment methods in terms of different model formulations and
then investigate the errors-in-variables model with inequality constraints for dependent variables.
Finally, we demonstrate the practicality of our approach with a planar geodetic transformation,
where the uncertainty of the target observations is reduced via the inequality constraints for
dependent variables.
Keywords: Total least-squares, Errors-in-variables model, Inequality constraints, Dependent variables, Geodetic transformation, Uncertainty reduction

Introduction
In recent years, there has been a renewed interest in geo-
detic datum conversion methods due to the need to trans-
form data measured in old coordinate systems to high-
precision GNSS-based data (Felus and Burtch 2009). In
these cases, the total least-squares (TLS) adjustment
method is frequently used to reach the desired accuracy.
Actually, it has been known for more than a century
that the errors-in-variables (EIV) model can be treated
as a special case of the nonlinear Gauss–Helmert model
(GHM). This implies that the EIV model can be adjusted
by the least-squares (LS) method in an iteratively line-
arised model, as shown by Helmert, Deming (1931,
1934) and, later, in Neitzel (2010).
Since the seminal paper by Golub and Van Loan

(1980), investigation has been attempted in various
ways. Regarding the limitation of the stochastic model
(covariance matrix of all random errors), the original
TLS approach, which could tolerate only diagonal covari-
ance matrices, has been generalised in several steps, by
Schaffrin and Wieser (2008), Fang (2011), Amiri-Sim-
kooei and Jazaeri (2012), Mahboub (2012), Snow
(2012), Xu et al. (2012), Amiri-Simkooei (2013) and
Fang (2013, 2014a, 2015), to accept any non-negative
covariance matrices. Further progress has been made
towards the direct use of existing adjustment models,

which can be used to reformulate or reinterpret the func-
tional part of the EIV model.
In contrast to the iteratively linearised GHM, non-

linear TLS algorithms have been developed in different
ways. Schaffrin and Wieser (2011) transformed the stan-
dard EIV model into the condition adjustment model.
In this model transformation, a coefficient matrix elimin-
ates the corrected design matrix, where the sum of the
ranks of both matrices equals the length of the obser-
vation vector. Teunissen (1988) reformulated the EIV
model as an extended Gauss Markov adjustment model,
in which the elements in the design matrix are regarded
as unknowns (also see the generalisation of Xu et al.
2012). Schaffrin (2013) showed that the EIV model can
be interpreted as a set of direct observation equations
with nonlinear constraints, which were proved to be
equivalent to the orthogonal regression applied by Dem-
ing (1931, 1934). Furthermore, Amiri-Simkooei and
Jazaeri (2012) and Jazaeri et al. (2014) formulated the
EIV model using the standard least-squares theory.
The EIV model with inequality constraints is another

important extension that has been investigated recently.
Zhang et al. (2013) proposed a combinatorial strategy
to adjust the EIV model with inequality constraints,
whereas Fang (2014b) and Fang and Wu (2015) used
the non-combinatorial strategy to obtain the inequality-
constrained TLS (ICTLS) solution. Later, Zeng et al.
(2015) proposed an iterative ICTLS algorithm based on
iteratively solving a linear complimentary problem.
Their algorithm can also account for restrictions on the
independent variables (the elements within the design
matrix). However, until now, it has not been clear how
to restrict dependent variables (elements within the obser-
vation vector) by inequalities in the symmetrical adjust-
ment. Therefore, it is theoretically meaningful that the
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independent variables as well as the dependent variables
can be restricted simultaneously in the symmetrical
adjustment. Note that in mathematical modelling, depen-
dent variables are studied to see how much they vary with
the independent variables. Practically, the prior infor-
mation – inequality constraints – can be obtained from
the previous transformation adjustment, which restricts
the estimated observations or the predicted residuals in
a trusted interval in the full analogy of reduction of
measurement uncertainty.
In this work, we first review the adjustment strategies of

the EIV model based on different conventional models.
Then an ICTLS solution is proposed based on direct
observation with constraints, which can restrict both inde-
pendent and dependent variables. Finally, we show the
application of the geodetic transformation and discuss
our conclusions.

Reformulation of EIV model to
conventional adjustment models
Let the standard EIV model be defined by the functional
and stochastic model

y+ vy=(A+ VA)j (1)

v := vec(VA)
vy

[ ]
= vA

vy

[ ]
� 0

0

[ ]
, s2

0Q
( )

(2)

where

y and vy are the observation and random correction
vectors, respectively;

A and VA are the full-column rank stochastic coefficient
matrix (n×m) and the corresponding random
correction matrix, respectively; j is the
unknown parameter vector with dimension
m× 1;

v is the extended random correction given by
vA = vec(VA);

s2
0 is the unknown/known variance factor; and

Q is the non-negative definite cofactor matrix of
the vector v.

Models equivalent to the EIV model have been applied
since at least Pearson (1901). In this section, we aim to
reformulate the EIV model using different conventional
adjustment models, namely the linearised GHM (con-
dition equations with unknowns), condition equations,
Gauss–Markov model (observation equations) and direct
observation equations with nonlinear constraints.

Gauss–Helmert model
For a long time, the nonlinear GHM has been used to
compute the LS solution of nonlinear models. The func-
tional EIV model

f(l+ v, j) = (A+ VA)j− y− vy = 0 (3)

can be linearised through the truncated Taylor series to
form the GHM (Fang and Wu 2015)

Aidj+ Biv+ wi = 0 (4)

with deterministic Jacobian matrices Ai = A+ Vi
A
and

Bi = [(ji)
T ⊗ In, − In], inconsistency vector wi and par-

ameter increment vector dj. Note that the model matrices

Ai and Bi are nonrandom. In conjunction with iterative
linearisation, the adjustment of the GHM can generate
the TLS solution of the EIV model (Neitzel 2010).

Condition equation model
The Gauss–Markov model can be transformed into con-
dition equations when the transposed coefficient matrix
ST multiplies the deterministic coefficient matrix A
equal a zero matrix and the rank condition
rank(S)+ rank(A) = n is fulfilled. A mixed formulation
of an EIV model was presented in Amiri-Simkooei et al.
(2016a). In analogy with the transformation between
the Gauss–Markov model and the condition equations,
Schaffrin and Wieser (2011) established the condition
equations for the EIV model

(S+ VS)
T (y+ vy) = 0 (5)

by using the null space condition and the rank condition

(S+ VS)
T (A+ VA) = 0

rank(S+ VS)+ rank(A+ VA) = n.
(6)

By iteratively computing the Lagrange multipliers, the
corrections VS and vy can be obtained after convergence.

Extended Gauss–Markov model
Teunissen (1985) was the first to point out that the TLS or
EIV problem can be formulated as a simple nonlinear
(bilinear) Gauss–Markov model (also see Teunissen
1988). Recently, Xu et al. (2012) proposed a partial EIV
model to generate the TLS solution within the EIV
model even when the elements in the design matrix are
structured. This partial EIV model is applied in conjunc-
tion with increment of number of unknowns to simul-
taneously compute the original unknown parameters
and the predicted values of the elements within the design
matrix. Therefore, the EIV model can be reformulated as
a nonlinear extended Gauss–Markov model

y
vec(A)

[ ]
+ vy

vec(VA)

[ ]
= �Aj

vec(�A)

[ ]
(7)

where the matrix �A denotes the true design matrix.
For the nonlinear Gauss–Markov model, there are var-

ious ways to compute the parameter vector j and the true
design matrix �A (see Lenzmann and Lenzmann 2007 and
Xu et al. 2012). Since the independent variables are
regarded as new unknown parameters, the inequality con-
straints of the independent variables can be taken into
account (see Zeng et al. 2015).

Direct observation model with nonlinear
constraints
In last reformulation, the true observation vector �y is
introduced as an additional unknown parameter vector,
allowing the EIV model to be reformulated as a direct
observation model with nonlinear constraints

y

vec(A)

[ ]
+ vy

vec(VA)

[ ]
= �y

vec(�A)

[ ]

subject to

�y− �Aj = 0

(8)
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where all the vectors �y, �A, j are regarded as unknowns.
Since the dependent variables are regarded as the
unknown parameter in this model, we might obtain the
chance to consider the inequality constraints for them.

EIV model with inequality constraints
for dependent variables
Although TLS estimates made using any of the equivalent
formulations described above could still be identical, the
last reformulation might have benefits when applied to
inequality-constrained problems. For example, in the
third formulation (Equation (7)), one can restrict the inde-
pendent variables and the unknown parameters; however,
the dependent variables cannot be restricted by incorpor-
ating linear inequality constraints since they are not
regarded as unknown parameters. In contrast, the fourth
formulation (Equation (8)) can explicitly handle the situ-
ation in which the inequality constraints of the dependent
variables are incorporated into the model.
If one incorporates the desired linear inequalities into

Equation (8), the functional part of the constrained EIV
model can be expressed as follows

y

vec(A)

[ ]
+ vy

vec(VA)

[ ]
= �y

vec(�A)

[ ]

subject to

�y− �Aj = 0

Cjt ≥ c

(9)

where C is the fixed coefficient matrix of inequality con-
straints, c is a constant vector on the right-hand side of
the inequality constraints and the extended parameter
vector jt denotes all unknowns including �A, �y and j. In
this case, the vector of dependent variables �y can be
fully restricted by inequality constraints.
Based on Equation (9), the objective function, in con-

junction with a linearisation, can be expressed as a stan-
dard quadratic programme

d�y

vec(d �A)

[ ]
− y− �y(0)

vec(A)− vec(�A(0)
)

[ ]( )T

Q− d�y

vec(d �A)

[ ]
− y− �y(0)

vec(A)− vec(�A(0)
)

[ ]( )

subject to

�y(0) − �A(0)
j(0) + I −j(0) ⊗ I −�A(0)

[ ] d�y

vec(d �A)

dj

⎡
⎢⎣

⎤
⎥⎦ = 0

C

d�y

vec(d �A)

dj

⎡
⎢⎣

⎤
⎥⎦+ C

�y(0)

vec(�A(0)
)

j(0)

⎡
⎢⎣

⎤
⎥⎦ ≥ c

(10)

where the vectors with the index (0) are approximate
values, and the vectors prefixed with d, denoting that
they are increments, are the new unknown parameters
to be determined in the quadratic form. Quadratic pro-
gramming is a well-known process, and has been
described in many text books (e.g. Nocedal and Wright

2006, p. 490), also see Fang (2014b) for the weighted
TLS environment. Note that the objective function is
invariant when the rank of the matrix ABQ

[ ]
equal n

(see Neitzel and Schaffrin 2016). When the increment of
the extended parameter vector is obtained, the next iter-
ation starts until the given tolerance is reached. Therefore,
the ICTLS algorithm for dependent variables can be
briefly described as follows
Step 1) Give approximated values
�y(0)

vec(�A(0)
)

j(0)

⎡
⎢⎣

⎤
⎥⎦ =

y
vec(A)

(ATA)
−1
ATy

⎡
⎣

⎤
⎦;

Step 2) Implement the quadratic programme

d�y

vec(d �A)

[ ]
− y− �y(0)

vec(A)− vec(�A(0)
)

[ ]( )T

Q− d�y

vec(d �A)

[ ]
− y− �y(0)

vec(A)− vec(�A(0)
)

[ ]( )

subject to

�y(0) − �A(0)
j(0) + I −j(0) ⊗ I −�A(0)

[ ] d�y

vec(d �A)

dj

⎡
⎢⎣

⎤
⎥⎦ = 0

C

d�y

vec(d �A)

dj

⎡
⎢⎣

⎤
⎥⎦+ C

�y(0)

vec(�A(0)
)

j(0)

⎡
⎢⎣

⎤
⎥⎦ ≥ c

to obtain the increments
dŷ

vec(dÂ)
dĵ

⎡
⎣

⎤
⎦.

Step 3) Create the new approximate values using

�y(1)

vec(�A(1)
)

j(1)

⎡
⎢⎣

⎤
⎥⎦ =

dŷ
vec(dÂ)

dĵ

⎡
⎣

⎤
⎦+

�y(0)

vec(�A(0)
)

j(0)

⎡
⎢⎣

⎤
⎥⎦

Then repeat Steps 2 and 3 until the norm of the incre-
ments is smaller than 10−10.
When the iterative process is terminated, the variance

factor can be approximated by the values of the objective
function (the total squared sum of residuals, TSSR)
divided by the degrees of freedom (n−m+ ca), where
ca is the number of active inequality constraints. Note
that the mean squared errors for the parameter vector
need to be investigated in future.
Since the bias analysis is difficult for the inequality-con-

strained LS problem, one could use the bias detection
technique after the constraints are treated as pseudo-
observation equations. Regarding the convergence of the
iteration, the proposed Gauss–Newton type iteration lin-
early converges to the local solution (see Teunissen 1990).

Numerical examples
The main purpose of this section is to illustrate the pro-
posed ICTLS algorithm through geodetic applications.
In this first example, we use the data presented in Peng
et al. to compute the ICTLS results. Table 1 gives the coef-
ficient matrix A and the observation vector y, as well as
values for the inequality B0j ≤ d0 and the box constraints

Zeng et al. On the errors-in-variables model with inequality constraints
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−0.1 ≤ ji ≤ 2.0, i = 1, 2, 3, 4. The inequality con-
straints, relating only to the parameter vector, can be for-
mulated together as

Inequality constraints for the parameter
vector

−BT
0 I4⊗ 1 −1

[ ][ ]T
j≥ −dT0 14⊗ −0.1 −2

[ ][ ]T
After computing the TLS solution with inequality con-
straints for the parameter vector, we present the results
in Table 2. The results of ICTLS in the second column
of Table 2 correspond exactly to the results presented in
Zhang et al. (2013); however, our method does not use
combinatorial strategies that can lead to large compu-
tational expenses. As the next step, we artificially add
some constraints for the independent variables as follows:

Inequality constraints for the dependent
variables

0.9 ≤ �a11 ≤ 1

0.7 ≤ �a12 ≤ 0.8

0.6 ≤ �a13 ≤ 0.7

0.4 ≤ �a14 ≤ 0.5

These correspond to the first row in the true design matrix
being restricted without loss of generality.
The results in the third column of Table 2 present our

estimates, which fulfil the inequality constraints both for
the independent variables and the parameter vector. The
parameter estimates do not significantly differ from the
ICTLS results in the second column. The small difference
may be explained by the verification that only the last con-
straint for the independent variables is active. Due to the

additional inequality constraints for dependent variables,
the TSSR is larger than that in the second column.
For the next test, we add the constraints for the depen-

dent variables:
Inequality constraints for the dependent variables

0.3 ≤ �y1 ≤ 0.5

0 ≤ �y4 ≤ 0.1

These correspond to the first and the fourth elements
within the observation vector.
The ICTLS results for restricting the parameter vector,

independent variables and dependent variables simul-
taneously are presented in the fourth column of Table 2.
The parameter estimates significantly differ from the
ICTLS results presented in the second and third columns.
The difference can be explained by the fact that additional
constraints for the dependent variables may change the
active sets of the inequality constraints for the indepen-
dent variables and the parameter vector. As expected,
the TSSR in this case is significantly larger than the first
two tests.

Similarity transformation with
inequality constraints for dependent
variables
In the second example, a 2D similarity transformation
problem is presented to test the proposed algorithms.
The functional model of the similarity transformation in
2-D space is considered as follows

X
Y

[ ]
≈ s

cosa sina
− sina cosa

[ ]
x
y

[ ]
+ Dx

Dy

[ ]
(11)

where x y
[ ]T

and X Y
[ ]T

are observed coordinates
of the source system and the target system, respectively.
a is the rotation angle, s is the scale and Dx Dy

[ ]T
are the translations in the x and y orientations.
Therefore, the whole equation system can be written as

follows:

X1

X2

X3

X4

Y1

Y2

Y3

Y4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

x1 −y1 1 0
x2 −y2 1 0
x3 −y3 1 0
x4 −y4 1 0
y1 x1 0 1
y2 x2 0 1
y3 x3 0 1
y4 x4 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a
b
c
d

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (12)

where a = s cosa, b = −s sina, c = Dx and d = Dy.
The data for the 2-D similarity transformation were

provided in Fang (2013). They are comprised of 2-D coor-
dinates of four points from both the source and target sys-
tems listed in Table 3 (unit: metre). It is noted that the
source and target data are i.i.d.

Table 2 The results of the ICTLS

ICTLS
(only for the
parameter
vector)

ICTLS
(for the

parameter vector
and dependent

variables)

ICTLS
(for the parameter

vector,
independent
variables and
dependent
variables)

ĵ1 −0.100000 −0.099998 0.087190

ĵ2 −0.100000 −0.099999 −0.100000

ĵ3 0.168547 0.167939 0.472197

ĵ4 0.399777 0.400421 −0.011879
TSSR 0.139737 0.139786 0.222367

Table 3 Coordinate estimates in source and target systems

Point number X (target) Y (target) x (source) y (source)

1 −117.478 0 17.856 144.794
2 117.472 0 252.637 154.448
3 0.015 −117. 41 140.089 32.326
4 −0.014 117.451 130.40 267.027

Table 1 Data from Peng et al. and Zhang et al. (2013)

A y

0.9501 0.7620 0.6153 0.4057 0.0578
0.2311 0.4564 0.7919 0.9354 0.3528
0.6068 0.0185 0.9218 0.9169 0.8131
0.4859 0.8214 0.7382 0.4102 0.0098
0.8912 0.4447 0.1762 0.8936 0.1388

B0 d0
0.2027 0.2721 0.7467 0.4659 0.5251
0.1987 0.1988 0.4450 0.4186 0.2026
0.6037 0.0152 0.9318 0.8462 0.6721
Box constraints: −0.1 ≤ ji ≤ 2.0, i = 1, 2, 3, 4
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By incorporating prior information (the information
from the previous adjustment), we have to reduce the
uncertainty of the source coordinates, which means that
the target coordinates are required in the given interval
round the observations. In this example, we apply the
interval+1 mm with the centre at the vector of the target
coordinates, which means that all adjusted observations
of the target coordinates are required within the interval.
We implement our algorithm (WTLS with inequality

constraints for dependent variables) by adapting the
above-mentioned prior information, and show the results
in Table 4. The translates differ from the WTLS results up
to the cm level whereas the product of the scale factor and
the rotation sine and cosine hold at the digit 10−3. There-
fore, the prior information represented by the inequality
constraints for the dependent variables is properly incor-
porated in the WTLS adjustment, and practically reduce
the uncertainty of the target observations which was con-
trolled by the previous adjustment.

Conclusion and outlook
In this work, we have reviewed all the reformulations of
the EIV model in terms of the conventional adjustment
models, and described algorithms to solve TLS problems
with inequality constraints that restrict the parameter vec-
tor, independent variables and dependent variables. The
proposed ICTLS algorithm is based on one reformulation
of the EIV model, the model with nonlinear constraints.
In the process of implementing the ICTLS algorithm,
quadratic programming is solved iteratively, with the par-
ameter vector, true design matrix and true observation
vector all treated as unknowns. Our algorithm success-
fully address the problem of the similarity transformation
with the prior information of the target observations rep-
resented by inequality constraints. As further study, the
statistical analysis including the mean squared error for
the ICTLS solution should be investigated. Since Amiri-
Simkooei et al. (2016b) proposed three strategies to com-
pute the covariance matrix of unconstrained estimate, we
will generalise the approach to the inequality case.
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