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Abstract
Tea cultivation has a long history in China, and it is one of 
the pillar industries of the Chinese agricultural economy. 
It is therefore necessary to map tea gardens for their ongo-
ing management. However, the previous studies have relied 
on fieldwork to achieve this task, which is time-consuming. 
In this paper, we propose a framework to map tea gardens 
using high-resolution remotely sensed imagery, including 
three scene-based methods: the bag-of-visual-words (BOVW) 
model, supervised latent Dirichlet allocation (sLDA), and the 
unsupervised convolutional neural network (UCNN). These 
methods can develop direct and holistic semantic representa-
tions for tea garden scenes composed of multiple sub-objects, 
thus they are more suitable than the traditional pixel-based 
or object-based methods, which focus on the local charac-
teristics of pixels or objects. In the experiments undertaken 
in this study, the three different methods were tested on four 
datasets from Longyan (Oolong tea), Hangzhou (Longjing 
tea), and Puer (Puer tea). All the methods achieved a good 
performance, both quantitatively and visually, and the UCNN 
outperformed the other methods. Moreover, it was found that 
the addition of textural features improved the accuracy of 
the BOVW and sLDA models, but had no effect on the UCNN.

Introduction
Tea is one of the most famous beverages in the world, and 
the consumption of tea is growing faster than that of coffee 
and cocoa (Cabrera et al., 2006). China was not only the first 
country to cultivate tea, but it is also one of the main produc-
ing countries (Dutta et al., 2010). The cultivation and produc-
tion of tea plays an important part in Chinese agriculture, 
and has a significant impact on the economic development 
of rural areas. Tea is produced in most provinces of southern 
China and is the major cash crop for many villages and towns. 
Thus, it is necessary to monitor and assess the tea gardens. 
However, this task is usually achieved by fieldwork, which is 
labor- and time-intensive. Meanwhile, remote sensing tech-
nology has been widely employed to detect and map crops, 

such as sugarcane (Vieira et al., 2012), paddy rice (Qin et al., 
2015), and coca (Pesaresi, 2008). Although it is an effective 
and convenient tool, few studies have been so far carried out 
for tea garden mapping using remotely sensed imagery.

The tea plant, an evergreen bush, can be easily confused 
with other woody vegetation in spectral characteristics. 
However, tea gardens exhibit unique textural features, which 
can be used to distinguish them from other vegetation, due to 
the unique form of tea cultivation. In high-resolution optical 
imagery, tea gardens are composed of multiple object types 
with a certain spatial and structural pattern: (1) tea bushes 
are generally planted in rows, showing obvious gaps between 
the rows; and (2) tea gardens contain not only the tea plants, 
but also bare soil, individual trees, and shadows (see Figure 
1). In this regard, a tea garden can be considered as a se-
mantic scene consisting of multiple interrelated sub-objects, 
rather than a single land-cover type. Because the pixel-based 
(Damodaran et al., 2017; Huang et al., 2014) or object-based 
(Ming et al., 2016; Zhu et al., 2017) image analysis methods, 
modeling the scene in a bottom-up manner, have difficulty in 
obtaining the holistic semantic representation of a scene, they 
are not suitable for detecting tea garden scenes with complex 
sub-categories and spatial patterns. On the other hand, scene-
based analysis techniques have been proved to be a more 
productive approach for the interpretation of high-resolution 
remotely sensed imagery (Cheriyadat, 2014; Huang et al., 
2015). Therefore, in this study, we propose a series of scene-
based interpretation models with spectral-textural features to 
detect tea gardens from high-resolution imagery.

In recent years, various scene classification approaches 
have been proposed. One particularly efficient method, the 
bag-of-visual-words (BOVW) model (Sivic and Zisserman, 
2003), has been widely used for remote sensing semantic clas-
sification (Cheriyadat, 2014; Sheng et al., 2012). In the classic 
BOVW model, an image is represented by a set of visual words, 
which are generated by clustering the local patches. Subse-
quently, topic models, such as probabilistic latent semantic 
analysis (pLSA) (Hofmann, 2001) and latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003), have been adopted to extract 
the latent semantic topic features from the BOVW representa-
tion and classify the scenes with the semantic topic features. 
The pLSA model uses a probabilistic approach to model an 
image, representing the frequency of the visual words as a 
finite mixture of an intermediate set of topics. LDA improves 
on pLSA by introducing a Dirichlet distribution into the topic 
mixture, thus overcoming the overfitting problem of pLSA. 
More recently, the sLDA model (Jon and David, 2008), which 
extends LDA by adding a response variable to indicate the 
class of the scenes in a generative process, has been proposed 
and successfully utilized in image annotation and satellite 
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scene classification (Chong et al., 2009; Putthividhy et al., 
2010; Huang et al., 2015).

However, the BOVW and topic models rely on the estab-
lishment of empirically designed features to depict the local 
patches of the images as visual words. In order to overcome 
this limitation, an increasing amount of research has focused 
on unsupervised machine learning methods to autonomously 
extract adaptive and suitable features from unlabeled input 
data. For example, Coates et al. (2010) built a single-layer 
UCNN for unsupervised feature learning. They used different 
unsupervised learning algorithms to generate local convolu-
tional features (i.e., function bases), and found that k-means 
clustering, which is an extremely simple learning algorithm, 
achieved the best performance. Blum et al. (2012) applied the 
network proposed in Coates et al. (2010) to object recognition 
from natural images with depth information. Dosovitskiy et 
al. (2014) developed a multi-layer UCNN to learn feature rep-
resentations from unlabeled images, and the learned features 
performed well in natural image classification. Recently, 
in order to classify remotely sensed scenes, Li et al. (2016) 
trained a multi-layer UCNN using k-means clustering to au-
tonomously mine complex structure features from high-reso-
lution images, and used support vector machine (SVM) for the 
final scene classification. In this study, the features extracted 
by the UCNN achieved a better scene classification accuracy 
than BOVW and sparse coding.

To the best of our knowledge, little research has been 
so performed concerning tea garden detection from remote 
sensing data. However, this is necessary since tea cultivation 
plays an important part in Chinese agriculture, but the current 
tea garden monitoring relies on field investigation, which is 
time-consuming and labor-intensive. In this context, in the 
proposed scene-based framework, high-resolution satellite 
images are employed to detect tea gardens, since these im-
ages can provide abundant spatial and textural information. 
Considering that a tea garden is a semantic scene composed 
of a variety of interrelated objects in a high-resolution image, 
we propose to apply scene-based semantic learning methods 
for tea garden detection, including the following experimental 
configurations: (1) BOVW is used to represent the scenes with 
spectral and Gabor textural features. An SVM classifier is then 
employed to classify the representation into tea gardens and 
non-tea gardens; (2) sLDA is used to extract the topic features 
from the BOVW representation of the scenes and predict the cat-
egory label of each scene; and 3) A multi-layer UCNN is trained 

to generate discriminative features from the original spectral 
images, and the derived features are also classified by SVM.

The rest of this paper is organized as follows. The next sec-
tion introduces the tea garden detection framework, followed 
by a description of the datasets and the experimental setup. 
The next section presents the detection results and discus-
sion with the different methods and features. The last section 
concludes the paper.

Methodology
In this section, we introduce the scene classification meth-
ods employed in this study (i.e., BOVW, sLDA, and the UCNN). 
Subsequently, the proposed scene-based tea garden detection 
framework is described in detail.

Topic Scene Classification Models
BOVW is the basis of the topic models, and thus it is pre-
sented before introducing the sLDA model. The BOVW model 
was derived from a text analysis method which represents 
a document by the word frequencies, ignoring their order. 
The idea was then applied to images by utilizing the visual 
words formed by vector quantizing the visual features. The 
BOVW representation is constructed in two stages, as shown in 
Figure 2, i.e., visual word learning and feature encoding. Dur-
ing the visual word learning, the remotely sensed images are 
divided into patches, and the spectral or textural information 
of these patches is extracted to generate feature vectors which 
can describe the patches. We then quantify the spectral and 
textural descriptors using the k-means clustering algorithm. 
The cluster centers, which are known as “visual words”, 
form a dictionary. In the feature encoding, an unrepresented 
scene is split into several patches. Each patch is assigned to 
the label of the closest cluster center after extracting features 
of the patch. In this way, an image can be represented by a fre-
quency histogram of the labeled patches. The histogram can 
be regarded as a feature vector for the subsequent classifica-
tion, whose size is equal to the size of the dictionary.

The BOVW model represents a scene as a text document by 
the frequencies of the visual words. The LDA model (Blei et 
al., 2003), which is a generative probabilistic model from the 
statistical text literature, characterizes the scene as random 
mixtures over latent topics, where each topic in turn is de-
scribed by a distribution over the visual words in the dic-
tionary. The process of LDA to generate a scene d can then be 
described as follows (as shown in Figure 3):

Figure 1. Examples of tea gardens: (a) Digital camera photographs, and (b) Google Earth images.
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1.	 For the scene d, a K-dimensional topic proportion θ is 
chosen according to a Dirichlet distribution Dir(α), where 
K is the number of topics.

2.	 For each visual word position in the scene, a topic z is 
first chosen from the multinomial distribution Mul(θ), and 
then a visual word w is chosen from p(w|z, β), a multino-
mial probability conditioned on topic z.

The above process shows that the model is controlled by α 
and β, and thus in the learning stage, our goal is to find the 
two parameters such that the log likelihood of the image 
dataset is maximized. It is clear that LDA is an unsupervised 
model, and the estimated topics are not specifically for classi-
fication. To mark the category of a document directly, Jon and 
David (2008) developed sLDA, which is a supervised variant 
of LDA, and proved that sLDA fitted the category of documents 
better than LDA. Since we are more concerned about the cat-
egory than the topics of the scene, the sLDA model is applied 
to tea garden scene detection in the proposed framework. 
As described in Jon and David (2008), sLDA adds a response 
variable which denotes the categories of the scenes (i.e., tea 
gardens and non-tea gardens in our study) in the generative 
process of LDA. After generating a scene, the response variable 
associated with this scene is also generated. Thus, the learned 
model can then be used to classify the unknown scenes.

Unsupervised Feature Learning
In the proposed framework, the UCNN, via the plain k-means 
clustering method, is constructed to achieve unsupervised 
multi-layer feature learning (Li et al., 2016). As depicted in 
Figure 4, the UCNN is composed of two feature extraction lay-
ers, and each layer contains three operations: convolution, 

local pooling, and global pooling. In the following, we take 
the first feature extraction layer as an example to introduce 
the three operations.
1.	 Convolution operation: The function of the convolution 

operation is feature mapping, which is defined under the 
constraint of function bases. The function bases need to 
be generated by an unsupervised learning algorithm, and 
k-means clustering is utilized in the proposed frame-
work due to its good performance (Coates et al., 2010). 
As described in Li et al. (2016), the unlabeled patches 
with dimension w – w – d are randomly sampled from 
the original image scenes, where w denotes the size of the 
receptive field, and d is the number of image channels. We 
can then construct the feature set X = {x1, x2, …, xM}, where 
xi ∈ RN(N = w*w*d) denotes the vectorization vector of the 
i – th patch. After preprocessing by intensity normaliza-
tion and zero component analysis whitening, the feature 
set X is clustered by the k-means clustering approach, and 
the clustering centers form the function bases C = {c1, c2, 
…, cK}, with ci ∈ RK. Once the function bases are generated, 
the convolution operation can be defined as follows. Let 
p denote the vectorization vector of one sliding patch in 
the input image I, then this patch can be mapped onto the 
sparse feature vector f ∈ RK:

	 fk = max{0, μ(z) – zk}	 (1)

where zk = ||p – cK||2, k = 1, 2, …, K and μ(z) is the mean 
of the elements of z. Through the convolution operation, 
we produce the feature map F of the input image I with 
dimension (h – n) – (h – n) – d, where h denotes the size 
of image I.

2.	 Local pooling operation: This pooling operation is imple-
mented to keep slight translation and rotation invariance. 
Here, the local pooling operation is defined as:

	 a. L(i/s, j/s, k) = max(F(i – s/2: i + s/2: j – s/2: j + s/2:))	 (2)

where k = 1, 2, …, K and s denotes the local window size 
of the pooling operation,

3.	 Global pooling operation: The aim of the global pooling 
operation is to reduce the dimension of the feature. In the 
implementation, the output of the local pooling operation 

Figure 2. Flowchart of the BOVW model.

Figure 3. Generative process of LDA.
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is divided into four quarters, and the averaging operation 
is employed for each quarter. We let g1, g2, g3, g4 denote the 
corresponding feature vectors of every quarter, and then 
the global pooling result can be expressed as G = {g1, g2, g3, 
g4}, where the dimension of G is 4*K.

The multi-layer features can be obtained by repeating the 
convolution, local pooling, and global pooling operations. 
Specifically, taking the original image as the input of the first 
layer and implementing the three operations, we can obtain 
the feature extracted by the first layer, i.e., the result of the 
global pooling operation. Then, taking the result of the local 
pooling operation in the first layer as the input of the second 
layer, we can obtain the feature of the second layer by the 
three operations. The features of the higher layers can be 
similarly extracted. Finally, we integrate the features of each 
layer as the final multi-layer features.

The Proposed Tea Garden Scene Detection Framework
The proposed scene-based framework for tea garden detection 
is illustrated in Figure 5. First, the whole remotely sensed 
image is divided into a series of scenes, with each scene refer-
ring to an image block with a certain semantic category. Since 
a tea garden does not always occupy all of a scene, we utilize 
the overlapping regions to decrease the omissions, and the 
size of an overlapping region is half of the scene. Then, based 
on the extracted spectral and textural features, the BOVW, 
sLDA, and UCNN representations of each scene are computed, 
respectively. Note that the dictionary in BOVW or the UCNN 
is trained by unlabeled data before detection. Finally, SVM, 
which is an efficient classifier for remotely sensed image 
classification (Huang and Zhang, 2013; Qin, 2015), is trained 
using a small number of labeled samples to classify these 
representations into tea gardens and non-tea gardens, expect 
for the sLDA model, which can directly predict the category 
of each scene after training. In addition, for the purpose of 
a comparison, the scenes with spectral and spectral-textural 
features are also directly classified with SVM.

In our work, the Gabor filter (Lee, 1996) is used to extract 
the textural features due to its high efficacy in remote sensing 
image texture description (Reis and Taşdemir, 2011; Wang et 
al., 2014). It is defined as:
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where a,b denote the scale along x and y, respectively, and 
u,v are the spatial frequencies of the filter in the frequency do-
main. To improve the calculation efficiency, the first principal 
component acquired by principal component analysis (PCA) 
is employed to extract the Gabor textures. In addition, for the 
sample patches in the BOVW model, we calculate the mean 
and standard deviation of each spectral/Gabor band as the 
spectral/textural feature. In the same way, we also generate 
the spectral and textural feature vectors for direct classifica-
tion with SVM, as a benchmark.

Experimental Data and Setup
Datasets
The experiments were carried out on four datasets, includ-
ing one remotely sensed image from the WorldView-2 (WV-2) 
satellite and three images from Google Earth®. The details of 
the four datasets are listed in Table 1, and the RGB images are 
shown in Figure 6 (a). Dataset 1 was acquired from WV-2, 
having eight spectral bands of a 2-m spatial resolution. Datas-
et 1 and dataset 2 were obtained at Longyan, Fujian province, 

where the tea that is cultivated is mainly Oolong tea. The 
tea in dataset 3 is Longjing tea, which is a famous green tea 
mainly planted in Hangzhou, Zhejiang province. The area of 
dataset 4 is Puer, Yunnan province, which is famous for the 
cultivation of Puer tea.

Experimental Setup
The aforementioned datasets with different varieties of tea 
were used to test the performance of the proposed scene-
based framework. For each testing image, 10 sets of samples 
were randomly chosen, with each one containing 20 tea 
garden scenes and 20 non-tea garden scenes as training data 
to train the linear SVM and sLDA, and 200 tea garden scenes 
and 400 non-tea garden scenes (independent of the training 
scenes) as test data to assess the classification accuracy. In the 
experiments, we selected the scenes with more than 90% of 
the area occupied by tea garden as tea garden scenes, and the 
scenes with no tea garden as non-tea garden scenes according 
to Huang et al. (2015). The scenes with less than 90% of the 
tea garden area were not considered in accuracy assessment. 
In addition, Kappa was used as the evaluation criteria, con-
sidering the unbalanced numbers of tea garden and non-tea 
garden scenes in the test data.

The parameters used in the four datasets are provided below:
1.	 Scene size: the size of each scene was 60 m × 60 m, i.e. 

30 × 30 pixels for WV-2 imagery and 120 × 120 pixels for 
Google Earth imagery. The sensitivity of this parameter is 
discussed in the next section.

2.	 Spectral bands: 8 multispectral bands for WV-2 and 3 
bands (red, green, and blue) for Google Earth images were 
employed to generate spectral and textural features.

3.	 Gabor filter: The spatial frequencies u,v are expressed in 
polar coordinates with radial frequency f and orientation 
θ. The parameters of the Gabor filter were set to a = b = 4, f 
= {0.006, 0.02, 0.06}, and θ = {0, π/3, 2π/3,}.

4.	 Topic model: For the BOVW model, the size of the learned 
dictionary in each dataset (i.e., the number of cluster 
centers of k-means) was set to 100. The parameters of sLDA 
were determined using 5-fold cross-validation.

5.	 Unsupervised feature learning: In our implementation, the 
UCNN trained by each dataset contained two layers, with 
K1 = 100 and K2 = 300, where K1,K2 are the numbers of 

Figure 4. Framework of unsupervised feature learning.
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function bases in the first and second layer, respectively. 
The receptive field size w was set to 2, and the window 
size s of the local pooling operation was set to 2. All pa-
rameters were determined according to the suggestions in 
Li et al. (2016).

6.	 SVM: The plain linear SVM classifier, with the parameters 
determined by 5-fold cross-validation, was utilized for the 
scene classification. The training data comprised 20 tea 
garden scenes and 20 non-tea garden scenes.

Results and Discussion
In this section, the accuracy assessment and visual results are 
reported first. We then discuss the efficacy of the textual fea-
ture, and compare the different scene classification models. 
Finally, we analyze the sensitivity of the scene size.

General Results
In this experiment, the classification was repeated using the 
10 sets of samples for all the methods and the average Kappa 
as well as its standard deviation was recorded, to assess the 
performance. The results are presented in Table 2. It can be 
seen that most of the Kappa values are higher than 0.80, ex-
cept for Original, BOVW, and sLDA in dataset 2. Moreover, the 
optimal Kappa values of each dataset exceed 0.88 and are all 

obtained by the UCNN. These results confirm the satisfactory 
performance of the proposed scene-based framework for tea 
garden detection, and the unsupervised feature learning based 
UCNN performs the best of all.

In order to show the detection results for the different 
datasets visually, we present the classification maps in Figure 
6 as well as a set of examples in Figure 7. The ground-truth 
map for each dataset was manually delineated based on vi-
sual interpretation. In the classification maps, the scale of the 
minimum processing unit is half of the scene size (30 m), due 
to the overlapping, and in this way each unit can be covered 

Table 1. Details of the datasets.

Study area Tea Data source Resolution Size Time

Dataset1 Longyan Oolong WorldView-2 2m 4096×4096 2011/12
Dataset2 Longyan Oolong Google Earth 0.5m 4000×4000 2014/12
Dataset3 Hangzhou Longjing Google Earth 0.5m 4000×4000 2016/07
Dataset4 Puer Puer Google Earth 0.5m 4000×4000 2016/02

Figure 5. The proposed scene-based tea garden detection framework.

Table 2. Classification accuracy (Original = SVM classification 
directly using the spectral or spectral-textural features).

Dataset1 Dataset2 Dataset3 Dataset4

Spectral

Original 0.84±0.04 0.75±0.06 0.88±0.04 0.95±0.02

BOVW 0.81±0.06 0.74±0.04 0.90±0.03 0.89±0.04

sLDA 0.85±0.02 0.74±0.04 0.91±0.03 0.90±0.02

UCNN 0.88±0.04 0.91±0.04 0.94±0.03 0.98±0.01

Spectral-
Textural

Original 0.85±0.03 0.75±0.06 0.88±0.05 0.95±0.02

BOVW 0.83±0.03 0.78±0.03 0.92±0.03 0.95±0.02

sLDA 0.86±0.02 0.79±0.04 0.93±0.03 0.95±0.01

UCNN 0.88±0.03 0.88±0.05 0.96±0.02 0.98±0.01
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by four scenes. The brightness 
of each unit is dependent on the 
number of tea garden scenes in the 
unit, i.e. the possibility of the unit 
belonging to tea garden (the lighter 
the unit, the higher the possibility 
that it belongs to tea garden). As 
shown in Figure 6, the results for 
dataset 2, dataset 3, and dataset 4 
are very close to the ground truth, 
especially the maps derived from 
the UCNN. On the maps of dataset 
1, there is a higher false alarm rate. 
The main reason for this is that the 
lower resolution of dataset 1 results 
in confusion between tea gardens 
and sparse vegetation such as or-
chards and bushes.

Efficacy of Textural Features
The Kappa values of all the scene 
classification methods with spec-
tral or spectral-textural features are 
compared in Figure 8. In general, 
it can be seen that the spectral-tex-
tural feature achieves comparable 
or better results than the spectral 
feature alone. For the BOVW and 
sLDA models, the spectral-textural 
feature performs significantly bet-
ter than the spectral feature, and 
the Kappa value increases by up 
to 0.06. However, in terms of the 
UCNN, the addition of the textural 
feature does not raise the classi-
fication accuracy, and the Kappa 
value is even slightly decreased 
in dataset 2. The addition of the 
textural feature can improve the 
performance of the topic models, 
but it cannot enhance the UCNN. 
This phenomenon shows that the 
topic scene models are depen-
dent on the input features, but the 
unsupervised feature learning can 
adaptively produce suitable and 
discriminative features from the 
original data. There is therefore no need to include manually 
designed features.

The visual results are shown in Figure 9, taking dataset 2 
as an example. On the maps generated by BOVW, the consid-
eration of additional textural features effectively reduces the 
false alarms when comparing Figure 9 (e) and (f). Figure 9 (d) 
shows an example image of a false alarm (bare ground, not a 
tea garden) in the result map of BOVW. It is incorrectly identi-
fied as a target using the spectral information alone, but is 
correctly classified by the textural feature. On the other hand, 
however, as for the UCNN model, the maps of the spectral 
feature and spectral-textural feature are similar, and the ad-
dition of the textural information does not change the result. 
As described in Li et al. (2016), the first and second layer 
in the UCNN can automatically extract the structure features 
such as edges, corners, and junctions, which can be regarded 
as the composition of texture. It is shown that these features 
extracted from the image by the UCNN are adequately dis-
criminative for tea garden identification and, hence, textural 
features cannot increase the accuracy of the UCNN.

Comparison of Different Scene Classification Models
Figure 10 presents the best results (with spectral or spectral-
textural features) for each scene classification model in the 
different datasets. UCNN achieves the best performance in all 
the datasets, especially in dataset 2, which contains a large 
amount of sparse vegetation. This phenomenon can also be 
supported by Figure 11, which shows the best visual result of 
each model in dataset 2. False alarms in the map of BOVW and 
sLDA can be observed, especially for sLDA. The classification 
map of the UCNN is the closest to the reference. Although the 
topic models have been proven to be very effective for scene 
classification of remotely sensed images (Lienou et al., 2010; 
Huang et al., 2015), they only achieve similar or slightly bet-
ter performances than SVM classification in tea garden detec-
tion. A possible reason for this is that the handcrafted features 
which topic models depend on are not sufficient to represent 
the semantic information (i.e., the spatial relationship of 
sub-objects in the tea garden scenes). Instead, the UCNN, a 
data-driven feature descriptor, can robustly characterize the 
structure information and the spatial pattern of the tea planta-
tion, which determines the semantic category of tea garden. 
Therefore, unsupervised feature learning based on the UCNN 
outperforms the topic models for tea garden detection.

Figure 6. The classification maps: (a) Raw image, (b) Ground truth, (c) BOVW (spectral-
textural), (d) sLDA (spectral-textural), and (e) UCNN (spectral).
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Effect of the Scene Size
In the above experiments, 60 m was 
empirically chosen as the scene 
size, and the accuracies, as well as 
the visual results, can be regarded 
as satisfactory. However, the scene 
size can have a significant effect on 
the results of the proposed scene-
based approach. A small scene size 
can preserve more details, but it 
is insufficient to characterize the 
spatial pattern of the tea gardens. 
On the other hand, as exhibited 
in Figure 12, the map with a large 
scene size (80 m) shows a better 
accuracy than the one with a small 
scene size (40 m), but it loses more 
information. In order to investigate 
the effect of scene size in terms of 
both accuracy and detail preserva-
tion, additional experiments were 
conducted with a series of scene 
sizes: 40 m, 50 m, 60 m, 70 m, and 
80 m. More specifically, the best 
Kappa value was used to represent 
the detection accuracy, and mutual 
information entropy (Susaki et al., 
2014; Huang et al., 2017), which 
measures the dissimilarity of the 
entropy between the two images, 
was employed to evaluate the detail 
loss. Since the map with the small-
est scene size (40 m) lost the least 
details, it was selected as the bench-
mark to calculate the mutual infor-
mation entropy. Figure 13 shows 
the results of BOVW and the UCNN 
in dataset2. As expected, the larger 
scene size results in a higher Kappa 
value, but a lower mutual informa-
tion entropy (loss of details). It can 
be seen that the Kappa value in-
creases slowly as the scene size in-
creases, but the mutual information Figure 7. The example patches of the classification maps: (a) Raw image, (b) Ground 

truth, (c) BOVW (spectral-textural), (d) sLDA (spectral-textural), and (e) UCNN (spectral).

Figure 8. Comparison between the Kappa values of the 
different features.

Figure 9. Comparison between the classification maps of 
the different features in dataset 4, (d) is the raw image of the 
example marked by a rectangle in (e) and (f).
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Figure 11. Comparison between the classification maps of the different models in dataset 2.

Figure 12. Comparison between the classification maps of differentscene sizes in dataset 2.

Figure 13. Comparison of the Kappa values and mutual information entropy between 
different scene sizes in dataset 2.

entropy sharply increases from 60 m to 70 m. Therefore, in this 
study, we selected 60 m as an appropriate scene size to balance 
the detection accuracy and mapping detail.

Conclusions
In this paper, we have proposed a scene-based framework to 
effectively detect tea gardens from high-resolution remotely 
sensed imagery. The proposed framework is made up of three 
scene classification models: the bag-of-visual-words model, 
supervised latent Dirichlet allocation, and the unsupervised 
convolutional neural network. These models achieved a high 
accuracy and produced fine classification maps in our study 
area. Through discussion and comparison, it was found that 
unsupervised feature learning based on the UCNN outperformed 
the other models in both accuracy assessment and visual 
results. Furthermore, it was found that the supplement of the 
textural features could significantly 
improve the performance of the 
topic models, but it had no effect on 
the performance of the UCNN, since 
this model can automatically and 
adequately extract the discrimina-
tive features from the raw images.

To the best of our knowledge, 
this is the first study of tea garden 
detection using remotely sensed 
imagery. Since tea plants are the 
main cash crop in Chinese rural 
areas, particularly in the mountain 
villages in the southern provinces, 
tea garden detection and monitor-
ing is important for the assessment 
and guidance of economic develop-
ment in these areas. In the future, 
we plan to implement the proposed 
tea garden detection framework at 
a larger scale for tea cultivation and 
economic assessment.
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